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Abstract
We study various models of transducers equipped with origin information. We consider the
semantics of these models as particular graphs, called origin graphs, and we characterise the
families of such graphs recognised by streaming string transducers.
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1 Introduction

This paper is about string-to-string transductions with origin semantics. A string-to-string
transduction is a binary relation between strings over fixed input and output alphabets.
Examples include the squaring transduction w 7→ ww or the subword transduction, which is
the set of pairs (u, v) such that v is a subword of u. Note that squaring is a function, while
subword is a relation; both types will be studied. The origin semantics of a transduction
(technically speaking, of a device computing it) consists not only of pairs (u, v) of input and
output words, but also gives an origin mapping that specifies which positions of the input
word were used to produce which positions of the output word. For example, suppose that
we model the squaring transduction by a two-way automaton which does two consecutive
left-to-right passes over the input word and copies the input word in each one. In this case,
the origin semantics over a particular input word can be visualised as follows:

input word

output word

origin mapping

baa

ba a baa
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114:2 Which Classes of Origin Graphs Are Generated by Transducers?

An object as in the above picture is called an origin graph, and we define an origin string-
to-string transduction to be a set of origin graphs. Origin semantics is more fine-grained
semantics than the usual semantics of transductions in the sense that even if two devices
compute the same transduction, they might not have the same origin semantics. Origin
semantics were introduced in [5], where it was shown that existing models of transducers,
such as two-way transducers (also called two-way automata with outputs, e.g. [11]), mso
string-to-string transductions [9], or streaming string transducers [1, 3] can be equipped with
origin semantics so that they generate not sets of pairs of words, but sets of origin graphs
(the name origin graph is new in this paper). Furthermore, existing results on equivalence
between models remain true when the origin semantics are used [5]. We aim to study sets of
origin graphs that are origin semantics of transducers. There are two parts.

In the first part, we study decision problems that involve mso properties of origin graphs.
The main result (not very hard) is that when given an mso formula on origin graphs, and an
origin string-to-string transduction realised by a nondeterministic streaming string transducer,
one can decide if the formula is true in some origin graph from the transduction. This result
gives a generic framework for deciding questions like: is the origin mapping order preserving?
The result is proved by using techniques from the theory of mso transductions [9].

In the second part, we study the structural properties of those classes of origin graphs that
can be obtained by taking the origin semantics of some streaming string transducer (or any
of the other equivalent models). Our goal is to describe them in a machine independent way.
The principal result, Theorem 10, gives the following characterisation: a set of origin graphs
is the origin semantics of some nondeterministic streaming string transducer if and only if it
has three properties: (1) it is mso-definable as a set of coloured graphs; (2) it has bounded
degree; and (3) it has bounded crossing, which means intuitively that the origin mapping does
not oscillate too much. The idea to give a machine independent characterisation of origin
semantics was already present in Theorem 1 from [5]. We believe however that origin graphs
are a more intuitive and visual notion than the factorised words used in [5]. Furthemore,
modelling the origin as a relational structure (the input word, the output word, and the
origin information) makes it possible to use mso logic, or to make the connection with
structural notions such as clique width or tree width. Hence, this paper can be seen as a
natural complement to the results form [5], or possibly a clearer picture. Furthermore, we
study more general models than [5], in particular we allow nondeterminism and ε-transitions.

Important related work is the paper [10], which proposes to use logic to describe properties
of origin graphs (they use the name productions). In [10], the authors ask about the
decidability of checking if a transducer, seen as a set of origin graphs, satisfies a specification
given in some logic. This is the direct inspiration for our results in Section 3, in particular
our Theorem 6 which says that it is decidable if a given mso formula is true in some origin
graph generated by a given transducer. In [10], the logic used to express properties of origin
graphs is a strict fragment of mso, called LT , a type of two-variable logic. Therefore, our
Theorem 6 is stronger than the model-checking result mentioned in [10, Section VI]. The
reason why [10] uses a logic weaker than mso is that they want to answer different questions
than model-checking a given transducer; in particular the logic LT is shown to have decidable
satisfiability when evaluated on the class of all origin graphs, contrary to mso.

2 Origin semantics

Define a string-to-string transduction with input alphabet Σ and output alphabet Γ to be a
relation R ⊆ Σ∗ × Γ∗. A transduction is functional when it is a partial function.
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I Example 1 (Running example). Define the squaring functional transduction to be the
function {a, b}∗ → {a, b}∗ defined by w 7→ ww.

2.1 Transductions recognised by streaming string transducers
The main topic of this paper is the class of string-to-string transductions recognised by
streaming string transducers [1]. Another equivalent presentation of this class is mso string-
to-string transductions, or a suitably defined nondeterministic version of two-way automata
with output. We will mainly use the definition in terms of streaming string transducers, so
we begin by defining that model.

Streaming string transducers. A streaming string transducer is a device which is used to
transform (possibly non-deterministically) a word over an input alphabet into a word over
an output alphabet. Because of nondeterminism, one input might produce several outputs,
possibly zero. The output is prepared by using registers. Before describing the device itself,
let us explain how registers are used. Let Γ be an output alphabet and let R be a set of
register names. Define a register valuation to be a function R → Γ∗ and a register update
to be a function R → (Γ ∪ R)∗. A register update is viewed as a function from register
valuations to register valuations in the following sense: if v is a register valuation and u is a
register update, then applying u to v yields a register valuation which stores in register r
the value u(r) with each register name replaced by its contents under v. For example if R
has only one register, and u is a register update defined by r 7→ ara, then applying u to a
register valuation simply adds the letter a to both the beginning and end of the word stored
in the unique register r. A register update u is called copyless if for every register name r
there is at most one register name s such that r appears in u(s), and furthermore r appears
at most once in u(s).

I Definition 2 (Streaming string transducer). The syntax1 of a streaming string transducer
with input alphabet Σ and output alphabet Γ consists of:

a nondeterministic automaton B with input alphabet Σ, called the underlying automaton;
a finite set of register names R with a distinguished output register ro ∈ R;
a labelling of transitions in B by copyless register updates.

I Example 3 (Running example). The squaring function is recognised by a functional
streaming string transducer which has two registers 1,2, with the output register being 1.
The following picture shows this underlying automaton and its labelling by register updates.

input letter
register update

a 1a
2a

1 
2 

1 
2 

1 
2 

1 
2 

a 
1a2a
ε

b 
1b2b
ε

b
1b
2b

p q

1 Our syntax for streaming string transducers is different than the one used in [1], but it is routine to
show that the expressive power is the same, as long as we allow nondeterminism.
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The automaton uses nondeterminism to guess the last position so that the two registers are
concatenated, however every nonempty input word admits exactly one run.

The semantics of a streaming string transducer is defined as follows. Suppose that ρ is
a run of the underlying automaton B, i.e., a sequence of transitions. Consider the empty
register valuation which maps all registers to the empty word, and then apply all the register
updates that label the transitions in ρ, beginning with the first transition and ending with
the last transition. The output of ρ is defined to be the word over the output alphabet
contained in the output register in the valuation described this way. Finally, the semantics of
a streaming string transducer is defined to be the string-to-string transduction which consists
of pairs (v, w) such that v is a word over the input alphabet and w is the output of some
accepting run over the input word.

I Example 4 (Running example). Here is a picture of a run of the transducer from Example 3:

b baa

register update when reading the third letter

register valuation a�er reading the third letter

1 1a
2 2a

1 1a
2 2a

1 1b
2 2b

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1b2b
ε

qpp p p

ε
ε

a
a

aa
aa

aab
aab

ε
aabbaabb

A streaming string transducer is called unambiguous if the automaton B admits at most
one accepting run on every input word2. For an unambiguous streaming string transducer,
its semantics is a partial function Σ∗ → Γ∗. The transducer in Example 3 is unambiguous.

2.2 Origin semantics and origin graphs
We now turn to the origin semantics of transducers. The idea is to give not just the output
word, but also say which input positions were used to produce which output positions. The
formalisation we use in this paper is origin graphs. Let fix an input alphabet Σ and an
output alphabet Γ. For w ∈ Σ∗ and v ∈ Γ∗, an origin graph with input w and output v is
defined to be a relational structure of the following form:

the universe is the disjoint union of positions in w and positions in v;
there are two binary predicates for the successor relations in w and v;
there is a binary predicate, called the origin mapping, which is a total function from
output positions to input positions;
for each a ∈ Σ ∪ Γ there is a unary predicate which identifies positions with label a.

2 One could also consider a streaming string transducer where the underlying automaton is deterministic.
In this case, we would need to slightly modify the semantics, by adding a final function which performs a
register update after reading the last input letter (e.g. concatenating the two registers as in the running
example). After adding such final function, the deterministic model would have the same expressive
power as the unambiguous variant used in this paper, see [1].
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Note that the vocabulary of the relational structure depends on the choice of input and
output alphabets; therefore a more formal definition would require talking about origin
graphs over (Σ,Γ) where Σ is the input alphabet and Γ is the output alphabet. An origin
graph can also be viewed as a directed graph, with vertices coloured by letters of the input
and output alphabets, and edges coloured by three possible colours: successor edge in the
input word, successor edge in the output word, and origin edge. Not every directed graph
coloured this way is an origin graph; in an origin graph the input successors form a path, the
output successors form a path on the remaining vertices, and the origin edges give a total
function from the second path to the first one.

I Definition 5. An origin string-to-string transduction (origin transduction for short) consists
of an input alphabet, an output alphabet, and a set of origin graphs over these alphabets.

Note that an origin transduction might contain origin graphs which differ only on the
origin mapping. Here is an example picture, for the (not necessarily connected) subword
relation equipped with the natural origin semantics:

baa

ba

baa

ba

An origin transduction is called functional if every input word appears in at most one
origin graph. An example of a functional origin transduction is the squaring in our running
example, when equipped with the natural origin information. A non-example is the subword
relation.

Let us define the origin semantics of a streaming string transducer. When reading an
input position x, the transducer executes a register update. Such a register update creates
some new letters which are added to registers, and also moves the contents between registers.
We assume that the origin of these created letters is the input position x, and remains this
way even if the position is moved to different registers in subsequent transitions. Using this
description, we can associate an origin graph to each run of the transducer. We say that an
origin transduction is the origin semantics of (or to use an alternative name, recognised by)
a streaming string transducer if it is the set of origin graphs corresponding to its successful
runs. Note that, when the automaton is nondeterministic, different successful runs over the
same input word and producing the same output word might generate different origin graphs.

3 MSO on origin graphs

In this section, we discuss properties of origin graphs that can be defined in monadic second-
order logic mso. This is the logic which extends first-order logic by allowing quantification
over sets of elements in the universe (but not sets of pairs, nor sets of sets, etc.). For a
definition of the syntax and semantics of mso, see [9].

MSO on origin graphs. An origin graph is a special case of a relational structure. If the
input and output alphabets are Σ and Γ, then the vocabulary of the relational structure
consists of three binary relations (input edge, output edge, origin edge) as well as one unary
predicate for each letter in Σ ∪ Γ. We use the name origin vocabulary of (Σ,Γ) for this
vocabulary. An mso formula over this vocabulary defines a set of origin graphs, namely those

ICALP 2017



114:6 Which Classes of Origin Graphs Are Generated by Transducers?

origin graphs where it is true. Note that the structures over the origin vocabulary which are
origin graphs are a set definable in mso, essentially because one can axiomatise in mso (but
not, e.g. in first-order logic) that a directed graph is a single finite directed path. Therefore
when talking about mso-definable sets of origin graphs, it makes no difference whether or
not we require the mso formula to check if a structure is actually an origin graph.

The following result shows that satisfiability of mso over origin graphs produced by a
given streaming string transducer is decidable.

I Theorem 6. The following problem is decidable:
Input: A nondeterministic streaming string transducer A and an mso formula ϕ over the

origin vocabulary corresponding to A;
Question: Is ϕ true in some origin graph in the origin semantics of A?

Proof Sketch. To prove this result it is convenient to use mso transductions in the sense of
Courcelle and Engelfriet, see [9]. We first convert A into a nondeterministic mso transduction,
which can be done while preserving origin semantics [5]3. Given an mso representation of A,
we can easily get an mso transduction which inputs a word over the input alphabet, and
outputs (non-deterministically) an origin graph that corresponds to some possible output of
A. Consider the following language

L = {w ∈ Σ∗ : ϕ is true in an origin graph produced by A on w}

By the Backward Translation Theorem (e.g. [9], p.66) the language L is definable in mso, as
the inverse image of an mso-definable property under an mso transduction. Therefore, L is
regular, since mso defines only regular word languages. J

I Example 7. An origin graph is called order preserving if the origin mapping gives a
non-decreasing function from output positions to input positions. The set of order preserving
origin graphs is clearly definable in mso. Theorem 3 in [5] says that if an origin transduction
has only order preserving origin graphs and is recognised by a streaming string transducer,
then it is already recognised by a nondeterministic one-way transducer. Therefore Theorem 6
gives an algorithm for deciding if a streaming string transducer is equivalent, in terms of
origin semantics, to a one-way nondeterministic transducer (such decidability, and even a
polynomial time algorithm, although with inputs represented in a different way, was already
given in [5]).

I Example 8 (Running example). Consider the squaring transduction. Every origin graph
in this transduction satisfies the following property, which can be formalised in mso: the
output positions can be partitioned into two connected blocks, such that the origin mapping
is order preserving when restricted to each of the blocks. For functional origin transductions,
this property corresponds to being recognised by a deterministic two-way transducer which
does two left-to-right passes on the input.

A corollary of the proof of Theorem 6 is that when the transducer A is fixed, then there
is a linear time algorithm (which simply runs a finite automaton) for checking if a given
input word can produce an origin graph satisfying ϕ.

I Proposition 9. If an origin transduction is recognised by a streaming string transducer,
then it is definable in mso as a set of origin graphs.

3 In [5] the conversion is done in the deterministic case, but it can be easily extended to the nondeterministic
case.
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Note that the converse of the above proposition is false, even assuming that there is a
bound on the number output positions which can originate in the same input position, see
Examples 13 and 15. The issue is that it is more difficult to produce an origin graph (using
the origin semantics of an mso transduction) than it is to check if a given origin graph is
correct.

4 Which sets of origin graphs are recognised by SSTs?

Which sets of origin graphs are recognised by streaming string transducers (equivalently,
mso transductions)?

What about functional streaming string transducers? The main goal of this paper is to
give machine independent characterisations of such sets. This is Theorem 10 below, which
says that a set of origin graphs is recognised by a streaming string transducer if and only if
it is mso-definable, has bounded origin (i.e., each input position is the origin of a bounded
number of output positions), and it has bounded crossing, as explained below.

An output position j in the graph is said to cross an input position i if the position j has
origin at most i and the successor of j either does not exist (i.e. j is the last output position)
or has origin greater than i. Intuitively, to go from the origin of position j to the origin
position j + 1 on the input word, a reading head needs to cross position i. Here is a picture:

baa

ba

baa

ba baa

input position i input position i

output position which crosses i output position which crosses i

baa

ba

input position i

output position which crosses i

I Theorem 10. Let G be an origin transduction, i.e., an input alphabet, an output alphabet,
and a set of origin graphs over these alphabets. Then G is recognised by a streaming string
transducer with k registers if and only if it satisfies all of the following conditions:
bounded origin: there is some m ∈ N such that in every origin graph from G, every input

position is the origin of at most m output positions;
k-crossing: in every origin graph from G, every input position is crossed by at most k output

positions;
mso-definable: there is an mso formula which is true in exactly the origin graphs from G.

The theorem allows one to decide if a given SST can be implemented with fewer registers
preserving origin semantics. This does not help with the resource minimisation problem from
[4], because in [4] origin information can be be changed in the minimisation process.

The proof of the theorem is sketched in the next section. A corollary of the theorem is
that an origin transduction is recognised by a streaming string transducer if and only if it
has bounded origin, is mso definable, and has bounded crossing (i.e., k-crossing for some k).
The following three examples show how the three conditions in Theorem 10 are minimal,
i.e., none of the conditions is implied by the remaining ones.

I Example 11 (MSO definable). Consider the identity origin transduction with its domain
restricted to some non-regular subset of inputs, e.g. words of prime length. This origin
transduction satisfies all conditions in Theorem 10 except for mso definability.

ICALP 2017
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I Example 12 (Bounded origin). Consider an origin transduction (with one letter in both
the input and output alphabets) which is only defined on inputs with one letter and then
copies the unique output letter an arbitrary number of times (therefore every output position
originates in the unique input position). This origin transduction satisfies all conditions in
Theorem 10 except for bounded origin. Streaming string transducers with ε-transitions, as
discussed in Section 5, will be able to recognise this example.

I Example 13 (Bounded crossing). Consider the following origin transduction, which is
functional. The input and output alphabets have only one letter each. The domain is words
of odd length. A word of length 2n+ 1 is mapped to a word of same length, but the origins
are shuffled so that the origins of odd numbered positions are the same position, while
the origins for even numbered positions are reversed. More precisely, if the positions are
0, . . . , 2n then the origin of an odd numbered position 2i+ 1 is 2i+ 1, while the origin of an
even numbered position 2i is 2n− 2i. Here is the picture of an origin graph in this origin
transduction:

1 2 3 4 5 6 7 80

1 6 3 4 5 2 7 08

We claim that this origin transduction has unbounded crossing, but satisfies the remaining
conditions in Theorem 10. To show unbounded crossing, observe that if the length of the
input word is 2n+ 1, then the middle input position n is crossed by all even numbered output
positions greater than n. Clearly every origin graph in the transduction has bounded origin,
because each input position is the origin of exactly one output position. For mso definability,
we observe that an origin graph belongs to the transduction if and only if it satisfies all the
following conditions which are definable in mso (in fact, first-order logic):
1. the origin of the first output position is the last input position;
2. the origin of the second output position is the second input position;
3. if j > 1 is an odd output position with origin i, then the origin of j − 2 is i− 2;
4. if j > 1 is an even output position with origin i, then the origin of j − 2 is i+ 2.

Tree width. In Theorem 10, we use bounded crossing as one of the conditions. Another
candidate for a structural property on origin graphs is that they have bounded tree width
(see e.g. [9] for a definition). The following result shows that bounded tree width (and even
bounded path width, which corresponds to the width of path decompositions, i.e., the special
case of tree decompositions where the tree is a path) is a necessary condition for being
recognised by a streaming string transducer. Indeed, we show that any origin transduction
which is bounded crossing has bounded path width. Moreover, we can express the crossing
boundedness property in terms of a particular path decomposition of bounded width.

I Proposition 14. Every bounded crossing origin transduction has bounded path width.

We now show that bounded path width is not a sufficient condition, in the sense that
the bottom-up implication of Theorem 10 would fail if we would replace bounded crossing
by bounded path width. One example is the origin transduction from Example 13, which
can be shown to have bounded path width. Here is another example, which also shows that
bounded crossing and recognisability by streaming string transducers are both notions that
are not closed under reversing origin edges.



M. Bojańczyk, L. Daviaud, B. Guillon, and V. Penelle 114:9

I Example 15. Consider a variant of the squaring function, which is defined only on words
of even length, and maps a word w to uv where u (resp. v) is the subword consisting of the
odd-numbered (resp. even-numbered) positions of w. This transduction is easily seen to be
recognised by a (deterministic) streaming string transducer, and hence the underlying set
G of origin graphs has bounded tree width by Proposition 14. Define G′ to be the set of
origin graphs which are obtained from G by reversing the origin edges. Here is a picture of
an origin graph in G′:

baa b ba

aa a bbb

Since the origin mapping is bijective, G′ is also a set of origin graphs. It has bounded origin
(bounded by 1). By Theorem 10 and Proposition 14, G is mso definable and has bounded
path width. Path width and mso definability are not changed by reversing arrows, and
therefore G′ has bounded origin, bounded path width and is also mso-definable. Nevertheless,
G′ is not the origin semantics of any streaming string transducer. Indeed, if A would be a
streaming string transducer recognising G′, then the pre-image under A of the regular set
(aa+ bb)∗ would be the non-regular set of words of the form ww over the alphabet {a, b},
contradicting the fact that regular word languages are preserved under taking pre-images of
streaming string transducers (essentially the Backwards Translation Theorem from [9]).

Recognisability. In Theorem 10, the conditions used are bounded origin, bounded crossing
and mso definability. While bounded origin and bounded crossing are purely combinatorial
properties of graphs, mso definability has a more syntactic character. A less syntactic
alternative to mso definability would be to use recognisability in the sense of Definition 4.29
in [8]. Intuitively speaking, a class of relational structures is called recognisable if it has
finite index for a certain naturally defined equivalence relation à la Myhill Nerode. In [6] it
is shown that if a class of relational structures has bounded tree width, then recognisability
is the same as thing as definability in mso. Therefore, in the statement of Theorem 10 we
could replace mso definability by recognisability, and the theorem would still be true.

The functional case. Theorem 10 gives a characterisation of origin transductions recognised
by streaming string transducers. Recall that a streaming string transducer was called
unambiguous if its underlying automaton had at most one successful run for each input word.
Such transducers are equivalent to the deterministic model in [3], also when using origin
semantics [5]. They can only recognise functional origin transductions. As it turns out, this is
the only restriction, i.e., if an origin transduction is functional and recognised by a (possibly
ambiguous) streaming string transducer, then it is recognised by an unambiguous one.
Furthermore, in the functional case the condition on bounded origin becomes superfluous.

I Theorem 16. Let G be an origin transduction. Then G is recognised by an unambiguous
streaming string transducer with k registers if and only if it is functional, k-crossing and
mso-definable.

Unambiguous streaming string transducers can moreover be simulated by deterministic ones
(in the sense of Alur and Černý [1]) but at the cost of adding registers [2].

ICALP 2017
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5 Sketch of the proof

To prove Theorems 10 and 16, we first characterise the origin graphs which can be generated
by streaming string transducers with ε-transitions. A streaming string transducer with
ε-transitions is the generalisation of the model described in Definition 2, where ε-transitions
are allowed in the underlying automaton. The origin mapping is defined so that if an output
position is created (i.e., added to some register) by an ε-transition, then its origin is the most
recently read input letter. To make this well defined, we make the syntactic restriction that
no ε-transitions can be used when in an initial state, and therefore the first transition in
each run must consume an input letter.

I Example 17. Consider the set of origin graphs where the input word has only one letter,
and hence this letter is the origin of all output positions, and the output word is anbn for
some n ∈ N. To recognise this string transduction, we use two registers. After reading the
unique input position, the automaton enters a loop of ε-transitions. Each one appends a
to one register, and b to the other. At the end, the transducer does an ε-transition to the
accepting state which concatenates both registers.

The above example shows that when ε-transitions are allowed, the origin semantics of a
streaming string transducer needs no longer to be mso-definable. Theorem 18 below shows
that if we additionally assume that a set of origin graphs is mso-definable, then being the
semantics of a streaming string transducer with ε-transitions is equivalent to having bounded
crossing. The theorem is the main step in our proof of Theorems 10 and 16.

I Theorem 18. Let G be an origin transduction which is mso-definable. Then, G is recognised
by a k-register streaming string transducer with ε-transitions if and only if G is k-crossing.

We sketch the proof here. The left-to-right implication is straightforward, and does not need
the assumption on mso definability. Below we discuss the converse implication. The idea
is that if an origin graph has bounded crossing, then it can be constructed by applying a
sequence of elementary operations to the empty graph. Intermediate objects produced by
these elementary operations are going to be like origin graphs, except that the output word
might be in several pieces, corresponding intuitively to the register contents. Define a k-block
origin graph to be the extension of origin graphs where there are exactly k output words,
which are called blocks, some of which may be empty, as in the following picture for k = 3:

input word

output word 1 output word 3output word 2
(empty)

origin mapping

aa

a a aa

To transform k-block origin graphs, we use the following toolkit of operations, which corres-
ponds intuitively to the registers in a streaming string transducer.
Input. This operation takes one parameter, a letter a of the input alphabet. The result of
the operation is that a new position with letter a is added to the end of the input word;

Output. This operation takes three parameters: a target block i ∈ {1, . . . , k}, a content c
which is either a letter of the output alphabet or a number j ∈ {1, . . . , k} different than i,
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and a side s ∈ {left,right}. The result of the operation is that the content (i.e., either an
output letter of or the contents of register c, depending on the type of c) is concatenated
to the left/right (depending on the side s) of the target block i. If the content is a letter,
then its origin is set to be the last input position (if there is no input position and the
content is a letter, then the operation fails).

We write Ωk for the above set of operations (assuming that the alphabets are implicit
from the context), which is finite. Define k-folding to be the function from (Ωk)∗ to k-block
origin graphs which maps a sequence of operations to the k-block origin graph obtained
by successively applying the sequence of operations starting from the empty k-block origin
graph. Note that k-folding is partial, because the output operation can fail.

I Lemma 19. The k-folding operation is (a) surjective; and (b) an mso interpretation.

Proof of Theorem 18. We only show the right-to-left implication. Suppose then that G is
an origin transduction which is mso definable and is k-crossing. Define G′ to be the set of
k-block origin graphs such that: (i) the i-th output word is empty for i 6= 1; and (ii) if only
the input and 1-st output word are kept, the resulting origin graph belongs to G. If G is mso
definable, then so is G′. Let L ⊆ (Ωk)∗ be those sequences of operations whose k-folding is in
G′. By Lemma 19 (b) and the Backwards Translation Theorem [9], L is definable in mso. By
Lemma 19 (a), G′ is equal to the image of L under k-folding. By Büchi-Elgot-Trakhtenbrot’s
Theorem [7], L is recognised by a finite automaton. We transform this finite automaton into
a k-register nondeterministic streaming string transducer with ε-transitions by translating
any letter σ of Ωk into:

a transition reading an input symbol without updating the registers, if σ is of type input;
an ε-transition with an appropriate register operation if σ is of type output. J

To complete the proof of Theorem 10, we finally show that if the origin semantics of an
εNSST has bounded origin then ε-transitions can be eliminated.

6 Classes of origin transductions and perspectives

Our main contribution is a characterisation of the origin semantics of streaming string
transducers (deterministic; nondeterministic; with ε-transitions providing mso-definability),
using properties of the origin graphs such as functionality, origin boundedness, crossing
boundedness and mso-definability. The origin transductions recognised by these transducers
form a hierarchy depicted in red in the figure below, where DSST (resp. NSST, εNSST) de-
notes the family of origin transductions recognised by a deterministic (resp. nondeterministic,
nondeterministic with ε-transitions) streaming string transducer.

The figure also includes two-way transducers, which define an orthogonal hierarchy,
depicted in blue. We consider deterministic and nondeterministic variants as well as those
with common guess. A two-way transducer (deterministic or not) is equipped with a common
guess if, before starting the computation, a finite colouring of the input positions is performed,
and this colouring is the same each time the head revisits a position. This strictly increases
the expressivity, e.g. the relation {(u, vv) | v is a subword of u} is recognised by a two-way
transducer with common guess but not without. The origin semantics of a two-way transducer
is defined in a natural way, i.e., an output letter originates in the input position which was
scanned by the input head when the letter has been produced. In the figure, the classes
of origin transductions recognised by two-way automata are denoted respectively by 2DT,
2NT, and 2NT with common guess.

ICALP 2017
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The class of functions recognised by deterministic two-way transducers (resp. with
common guess) is known to be the same as the one recognised by deterministic streaming
string transducers [11, 1] (resp. nondeterministic streaming string transducers [3]), even
when considering the origin semantics [5].

Finally, we denote by MSOT the family of origin transductions recognised by a non-
deterministic mso-transduction. It is equal to NSST [3, 11]. The transductions recognised
by deterministic mso-transductions are the same as for DSST [1], this remains true with
origin semantics [5].

We can prove that all the mso-definable (resp. bounded origin) origin transductions in
εNSST are recognised by a nondeterministic two-way transducer with common guess (resp.,
are in NSST). Moreover, all the transductions that have bounded origin and which are
recognised by a nondeterministic two-way transducer with common-guess, are recognised by a
streaming string tranducer (and have therefore bounded crossing). All the other intersections
are nonempty and can be populated with some origin transductions (with their natural origin
information) as depicted in the figure.

2NT with comm
on guess

εN
SST

2NT

NSST=M
SO

T

bo
un

de
d 

or
igi

n

functiona l

DSST= 2DT
bounded crossing

MSO
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