33,399 research outputs found

    On the Bootstrap for Persistence Diagrams and Landscapes

    Full text link
    Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separate topological signal from topological noise. In particular, we derive confidence sets for persistence diagrams and confidence bands for persistence landscapes

    Topological Data Analysis of Task-Based fMRI Data from Experiments on Schizophrenia

    Full text link
    We use methods from computational algebraic topology to study functional brain networks, in which nodes represent brain regions and weighted edges encode the similarity of fMRI time series from each region. With these tools, which allow one to characterize topological invariants such as loops in high-dimensional data, we are able to gain understanding into low-dimensional structures in networks in a way that complements traditional approaches that are based on pairwise interactions. In the present paper, we use persistent homology to analyze networks that we construct from task-based fMRI data from schizophrenia patients, healthy controls, and healthy siblings of schizophrenia patients. We thereby explore the persistence of topological structures such as loops at different scales in these networks. We use persistence landscapes and persistence images to create output summaries from our persistent-homology calculations, and we study the persistence landscapes and images using kk-means clustering and community detection. Based on our analysis of persistence landscapes, we find that the members of the sibling cohort have topological features (specifically, their 1-dimensional loops) that are distinct from the other two cohorts. From the persistence images, we are able to distinguish all three subject groups and to determine the brain regions in the loops (with four or more edges) that allow us to make these distinctions

    PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures

    Full text link
    Persistence diagrams, the most common descriptors of Topological Data Analysis, encode topological properties of data and have already proved pivotal in many different applications of data science. However, since the (metric) space of persistence diagrams is not Hilbert, they end up being difficult inputs for most Machine Learning techniques. To address this concern, several vectorization methods have been put forward that embed persistence diagrams into either finite-dimensional Euclidean space or (implicit) infinite dimensional Hilbert space with kernels. In this work, we focus on persistence diagrams built on top of graphs. Relying on extended persistence theory and the so-called heat kernel signature, we show how graphs can be encoded by (extended) persistence diagrams in a provably stable way. We then propose a general and versatile framework for learning vectorizations of persistence diagrams, which encompasses most of the vectorization techniques used in the literature. We finally showcase the experimental strength of our setup by achieving competitive scores on classification tasks on real-life graph datasets

    Separating Topological Noise from Features Using Persistent Entropy

    Get PDF
    Topology is the branch of mathematics that studies shapes and maps among them. From the algebraic definition of topology a new set of algorithms have been derived. These algorithms are identified with “computational topology” or often pointed out as Topological Data Analysis (TDA) and are used for investigating high-dimensional data in a quantitative manner. Persistent homology appears as a fundamental tool in Topological Data Analysis. It studies the evolution of k−dimensional holes along a sequence of simplicial complexes (i.e. a filtration). The set of intervals representing birth and death times of k−dimensional holes along such sequence is called the persistence barcode. k−dimensional holes with short lifetimes are informally considered to be topological noise, and those with a long lifetime are considered to be topological feature associated to the given data (i.e. the filtration). In this paper, we derive a simple method for separating topological noise from topological features using a novel measure for comparing persistence barcodes called persistent entropy.Ministerio de Economía y Competitividad MTM2015-67072-
    corecore