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Abstract. Topology is the branch of mathematics that studies shapes
and maps among them. From the algebraic definition of topology a new
set of algorithms have been derived. These algorithms are identified
with “computational topology” or often pointed out as Topological Data
Analysis (TDA) and are used for investigating high-dimensional data in a
quantitative manner. Persistent homology appears as a fundamental tool
in Topological Data Analysis. It studies the evolution of k−dimensional
holes along a sequence of simplicial complexes (i.e. a filtration). The set
of intervals representing birth and death times of k−dimensional holes
along such sequence is called the persistence barcode. k−dimensional
holes with short lifetimes are informally considered to be topological
noise, and those with a long lifetime are considered to be topological
feature associated to the given data (i.e. the filtration). In this paper, we
derive a simple method for separating topological noise from topological
features using a novel measure for comparing persistence barcodes called
persistent entropy.

Keywords: Persistent homology · Persistence barcodes · Shannon
entropy · Topological noise · Topological features

1 Introduction

Persistent homology studies the evolution of k−dimensional holes along a 
sequence of simplicial complexes. Persistence barcode is the collection of intervals 
representing birth and death times of k−dimensional holes along such sequence. 
In persistence barcode, k−dimensional holes with short lifetimes are informally 
considered to be “topological noise”, and those with a long lifetime are “topo-
logical features” of the given data.

In general, “very” long living intervals (long lifetime) are considered topolog-
ical features since they are stable to “small” changes in the filtration. Neverthe-
less, the definition of what a “topological feature” is, depends on the application. 
This way, the technique presented in this paper should be considered as an option
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that can be used for discriminating between topological features and topological
noise. Moreover, we claim it is very easy (and fast) to compute, and easy to
adapt depending on the application.

In [1] a methodology is presented for deriving confidence sets for persistence
diagrams to separate topological noise from topological features. The authors
focused on simple, synthetic examples as proof of concept. Their methods have
a simple visualization: one only needs to add a band around the diagonal of the
persistence diagram. Points in the band are consistent with being noise. The
first three methods are based on the distance function to the data. They started
with a sample from a distribution P supported on a topological space C. The
bottleneck distance is used as a metric on the space of persistence diagrams. The
last method uses density estimation. The advantage of the former is that it is
more directly connected to the raw data. The advantage of the latter is that it
is less fragile; that is, it is more robust to noise and outliers.

Persistent entropy (which is the Shannon entropy of the persistence barcode)
is a tool formally defined in [2] and used to measure similarities between two
persistence barcodes. A precursor of this definition was given in [3] to measure
how different the intervals of a barcode are in length.

In this paper, we use the difference of persistent entropy to measure sim-
ilarities between two persistent barcodes. More concretely, we derive a simple
method for separating topological noise from topological features of a given per-
sistence barcode obtained from a given filtration (ie., a sequence of simplicial
complexes) using the mentioned persistent entropy measurement.

2 Related Work

Persistent homology based techniques are nowadays widely used for analyzing
high dimensional dataset and they are good tool for shaping these dataset and
for understanding the meaning of the shapes. There are several techinques for
building a topological space from the data. The main approach is to complete the
data to a collection of combinatorial objects, i.e. simplices. A nested collection of
simplices forms a simplicial complex. Simplicial complexes can be obtained from
graphs and point cloud data (PCD) [4,5]. For example, PCD can be completed to
simplicial complexes by using the Vietoris-Rips approach. Vietoris-Rips filtration
is a versatile tool in topological data analysis. It is a sequence of simplicial
complexes built on a metric space to add topological structure to an otherwise
disconnected set of points. It is widely used because it encodes useful information
about the topology of the underlying metric space. The mathematical details of
Vietoris-Rips filtration are given in Sect. 3.

Let’s take a look at Fig. 1, it represents a collection of RNA secondary sub-
optimal structures within different bacteria. All the shapes are characterized
by several circular substructures, each of them is obtained by linking different
nucleotides. Each substructure encodes functional properties of the bacteria. Per-
sistent homology properly identifies these substructures. For the love of precise-
ness, Mamuye et al. [6], used Vietoris-Rips complexes and persistent homology



Fig. 1. From left to right: RNA secondary suboptimal structures within different bac-
teria.

for certifying that there are different species but characterized with the same
RNA suboptimal secondary structure, thus these species are functionally equiv-
alent.

In [7], the authors proposed a new methodology based on information the-
ory and persistent homology for classifying real length noisy signals produced
by small DC motors. They introduced an innovative approach based on “auto
mutual information” and the “CAO’s method” for providing the time delay
embedding of signals. The time delay embedding transforms the signal into a
point cloud data in R

d, where d is the dimension of the new space. Vietoris-Rips
complex is then computed and analyzed by persistent homology. The authors
classified the signal in two classes, respectively “properly working” and “broken”.

However, Vietoris-Rips based analysis suffers of the selection of the parame-
ter ε. Generally speaking, for different ε, different topological features can be
observed. In [7], ε was selected as the euclidean distance among the points in
the new space. We remark that the parameter ε does not have a unique physical
meaning and it depends on the problem under analysis. For example, in [8], sev-
eral applications of Vietoris-Rips based analysis to biological problems have been
reported and examples of different ε with different meaning were found. In order
to select the best ε, some statistics have been provided what it is known as “per-
sistence landscape” [9]. Landscape is a powerful tool for statistically assessing
the global shape of the data over different ε. Technically speaking, a landscape
is a piecewise linear function that basically maps a point within a persistent
diagram (or barcode) to a point in which the x−coordinate is the average para-
meter value over which the feature exists, and the y−coordinate is the half-life of
the feature. Landscape analysis allows to identify topological features and which
are not. In Sect. 5 we propose an alternative approach to landscape. The main
difference between landscape and our method is that the former uses the average
of ε, while the latter works directly on a fixed ε.

3 Background

This section provides a short recapitulation of the basic concepts needed as a
basis for the presented method for separating topological noise from features.

Informally, a topological space is a set of points each of them equipped with
the notion of neighboring. A simplicial complex is a kind of topological space



constructed by the union of n-dimensional simple pieces in such a way that the
common intersection of two pieces are lower-dimensional pieces of the same kind.
More concretely, an abstract simplicial complex K is composed by a set K0 of
0−simplices (also called vertices V , that can be thought as points in R

n); and,
for each k ≥ 1, a set Kk of k−simplices σ = {v0, v1, . . . , vk}, where vi ∈ V for
all i ∈ {0, . . . , k}, satisfying that:

– each k−simplex has k + 1 faces obtained removing one of its vertices;
– if a simplex σ is in K, then all faces of σ must be in K.

The underlying topological space of K is the union of the geometric realization of
its simplices: points for 0-simplices, line segments for 1-simplices, filled triangles
for 2-simplices, filled tetrahedra for 3-simplices and their n-dimensional coun-
terparts for n-simplices. We only consider finite (abstract) simplicial complexes
with finite dimension, i.e., there exists an integer n (called the dimension of K)
such that for k > n, Kk = ∅ and for 0 ≤ k ≤ n, Kk is a finite set. See [10,11] for
an introduction to algebraic topology.

Two classical examples of abstract simplicial complexes are each complexes
and Vietoris-Rips complexes (see [12, Chapter 3]). Let V be a finite set of points
in R

n. The ech complex of V and r denoted by r(V ) is the abstract simplicial
complex whose simplices are formed as follows. For each subset S of points in
V , form a closed ball of radius r/2 around each point in S, and include S as a
simplex of r(V ) if there is a common point contained in all of the balls in S. This
structure satisfies the definition of abstract simplicial complex. The Vietoris-
Rips complex denoted as V Rr(V ) is essentially the same as the ech complex.
Instead of checking if there is a common point contained in the intersection of
the (r/2)−ball around v for all v in S, we may just check pairs adding S as
a simplex of r(V ) if all the balls have pairwise intersections. We have r(V ) ⊆
V Rr(V ) ⊆√

2r (V ). See Fig. 2.

Fig. 2. [12, p. 72] Nine points with pairwise intersections among the disks indicated
by straight edges connecting their centers, for a fixed time ε. The ech complex ε(V )
fills nine of the ten possible triangles as well as the two tetrahedra. The Vietoris-Rips
complex V Rε(V ) fills the ten triangles and the two tetrahedra.



Homology is an algebraic machinery used for describing topological spaces.
The k−Betti number βk represents the rank of the k−dimensional homology
group of a given simplicial complex K. Informally, β0 is the number of connected
components, β1 counts the number of loops in R

2 or tunnels in R
3, β2 can be

thought as the number of voids and, in general, βk can be thought as the number
of k-dimensional holes.

Persistent homology is a method for computing k−dimensional holes of K
at different spatial resolutions. The key idea is as follows: First, the space must
be represented as a simplicial complex and a distance function must be defined
on the space. Second, a filtration of the simplicial complex, that is a nested
sequence of increasing subsets (referred above as different spatial resolutions), is
computed. More concretely, a filtration of a simplicial complex K is a collection
of simplicial complexes {K(t)|t ∈ R} of K such that K(t) ⊂ K(s) for t < s and
there exists tmax ∈ R such that Ktmax = K. The filtration time (or filter value)
of a simplex σ ∈ K is the smallest t such that σ ∈ K(t).

Then, persistent homology describes how the homology of a given simpli-
cial complex K changes along filtration. If the same topological feature (i.e.,
k−dimensional hole) is detected along a large number of subsets in the filtra-
tion, then it is likely to represent a true feature of the underlying space, rather
than artifacts of sampling, noise, or particular choice of parameters. More con-
cretely, a k−dimensional Betti interval, with endpoints [tstart, tend), corresponds
to a k−dimensional hole that appears at filtration time tstart and remains until
filtration time tend. The set of intervals representing birth and death times of
homology classes is called the persistence barcode associated to the corresponding
filtration. For more details and a more formal description we refer to [12].

4 Persistent Entropy

In order to measure how much the construction of a filtered simplicial complex
is ordered, a new entropy measure, the so-called persistent entropy, were defined
in [2]. A precursor of this definition was given in [3] to measure how different
the intervals of a barcode are in length. In [13], persistent entropy is used for
addressing the comparison between discrete piece-wise linear functions.

Given a ech or Vietoris-Rips filtration F = {K(t)|t ≤ T} (in practice one
will never construct the filtration up to the end and will stop at a certain time
T ), and the corresponding persistence barcode B = {[ai, bi) : 1 ≤ i ≤ n}, let
L = {�i = bi − ai : 1 ≤ i ≤ n}. The persistent entropy H of the filtration F is:

HL = −
n∑

i=1

�i

SL
log

�i

SL
, being SL =

∑

i∈I

�i.

Note that the maximum persistent entropy would correspond to the situation in
which all the intervals in the barcode are of equal length. Conversely, the value of
the persistent entropy decreases as more intervals of different lengths are present.
More concretely, if B has n intervals, the possible values of the persistent entropy
HL associated with the barcode B lie in the interval [0, log(n)].



The following result supports the idea that persistent entropy can differenti-
ate long from short intervals as we will see in the next section.

Theorem 1. For a fixed integer i, 1 ≤ i ≤ n, let Li = {�i+1, . . . �n}, Si =∑n
j=i+1 �j and let Hi be the persistent entropy associated to Li. Let

L′(i) = {�′
1, . . . , �

′
i, �i+1, . . . , �n}, where �′

j = Si/eHi , for 1 ≤ j ≤ i.

Then HL ≤ HL′(i).

Proof. Let us prove that HL′(i) is the maximum of all the possible persistent
entropies associated to lists of intervals with n elements, such that the last n− i
elements of any of such lists is {�i+1, . . . , �n}. Let M = {x1, . . . , xi, �i+1, . . . , �n}
(where xj > 0 for 1 ≤ j ≤ i) be any of such lists. Let Sx =

∑i
j=1 xj . Then, the

persistent entropy associated to M is:

HM =
i∑

j=1

xj

Sx + Si
log

(
xj

Sx + Si

)
+

n∑

j=i+1

�j

Sx + Si
log

(
�j

Sx + Si

)
.

In order to find out the maximum of HM with respect to the unknown variables
xk, 1 ≤ k ≤ i, we compute the partial derivative of HM with respect to those
variables:

∂HM

∂xk
=

1
(Sx + Si)2

⎛

⎝−SiHi + Si log
(

Si

xk

)
+

∑

j �=k

xj log
(

xj

xk

)⎞

⎠ .

Finally, {xk = Si

eHi
: 1 ≤ k ≤ i} is the solution of the system {∂HM

∂xk
= 0 : 1 ≤

k ≤ i}. �	

5 Separating Topological Features from Topological Noise

Let us start with a sample V from a distribution P supported on a topological
space C. Suppose the Vietoris-Rips filtration F is computed from V , and the
persistence barcodes B is computed from F . The following are the steps of our
proposed method, based on persistent entropy, to separate topological noise from
topological features in the persistence barcode B, estimating, in this way, the
topology of C.

1. Order the intervals in B by decreasing length. Then L = {�i = bi − ai : 1 ≤
i ≤ n} satisfies that �i ≤ �j for i < j;

2. Compute the persistent entropy HL of B. Denote HL′(0) := HL.
3. From i = 1 to i = n,

a. Compute the persistent entropy HL′(i) for L′(i) = {�′
1, . . . , �

′
i, �i+1, . . . ,

�n}, being �′
k = Si

eHi
for 1 ≤ k ≤ i as in Theorem 1.

b. Compute Hrel(i) = (HL′(i) − HL′(i−1))/(log(n) − HL).



c. If Hrel(i) > i
n , then the associated interval [ai, bi) represents a topological

feature. Otherwise, the interval [ai, bi) represents noise.

Steps 1, 2 and 3.a can be considered as a general method for any kind of appli-
cation. For 1 ≤ i ≤ n, HL′(i) is the entropy of the barcode obtained by replacing
the intervals �1, . . . , �i by i intervals that maximize the entropy. Observe that
HL′(0) = HL, HL′(i) < HL′(j) for 0 ≤ i < j ≤ n and HL′(n) = log(n) by
Theorem 1.

Step 3.b and 3.c are used to test a possible dissimilarity measure to differ-
entiate topological features from noise. These two steps could be modified later
depending on the application. In this paper, we use HL′(i) −HL′(i−1) to measure
the influence of the current interval �i in the initial persistent entropy HL. It
is in order to appreciate this influence, why we divide HL′(i) − HL′(i−1) by the
difference of the possible maximal entropy (which is log(n)) and HL. Then, we
compare the resulting Hrel(i) with i

n since Hrel(i) is affected by the total number
of intervals and the number of intervals we are replacing.

Fig. 3. Left: 30 data points sampled from a circle of radius 2. Middle: Balls of radius
0.5 centered at the sample points. Right: Balls of radius 0.8 centered at the sample
points.

We have applied our methodology to two different scenarios. First, we take 30
data points sampled from a circle of radius 2 (see Fig. 3(Left)). This example has
been taken from paper [1]. Vietoris-Rips complex for t = 0.5 can be deduced from
the picture shown in Fig. 3(Middle) which consists of two connected components
and zero loops. Looking at Vietoris-Rips complex for t = 0.8 (see Fig. 3(Right)),
we assist at the birth and death of topological features: at t = 0.8, one of the
connected components has died (was merged with the other one), and a loop
appears; this loop will die at t = 2, when the union of the pink balls representing
the distance function becomes simply connected.

In our method, an interval is considered to be a feature if Hrel(i) > i
n . In

Table 1(Left), we have applied our method to the intervals that make up the
barcode (without differentiating dimension). This way, only the intervals with
length 2 (that corresponds to the connected component that survives until the
end) and 1.2 (that correspond to the loop that appears at t = 0.8 and disappears
at t = 2) are considered features. Later, in Table 1(Right) we have applied our
method to the intervals that make up the 0-barcode (i.e., the lifetime of the
connected components along the filtration). This way, the intervals with length



2 and 0.7 (that corresponds to the connected components that dies just before
the loop is created) are considered features. This example highlight that we the
results may be different depending on if we apply our method to the whole set
of intervals of the barcode or if we do it dimension by dimension.

Table 1. Results of our method applied to the intervals that make up: (Left) the bar-
code (i.e., without differentiating dimension); and (Right) the 0-barcode; both associ-
ated to the Vietoris-Rips filtration obtained from 30 data points sampled from a circle
of radius 2 (see Fig. 3(Left)).

i
Hi

log(n)
Hrel(i) Feature

2. 0.967011 0.542391 yes
1.2 0.985761 0.260088 yes
0.7 0.991422 0.07853 no
0.45 0.992506 0.0150434 no
0.45 0.993746 0.0171948 no
. . . . . . . . . . . .

li
Hi

log(n)
Hrel(i) Feature

2. 0.985109 0.77248 yes
0.7 0.991032 0.0905039 yes
0.45 0.992167 0.0173301 no
0.45 0.993463 0.0198057 no
0.4 0.994199 0.0112466 no
. . . . . . . . . . . .

Consider now a set V of 400 points sampled from a 3D torus. The barcodes
(separated by dimension) computed from the Vietoris-Rips filtration associated
to V are showed in Fig. 4. We have applied our method to the 0-barcode (lifetime
of connected components along the V-R filtration) and the 1-barcode (lifetime
of loops along the V-R filtration). See Table 2(Left) and (Right), respectively.
The interval of length 1.9 in the table on the left corresponds to the connected
component that survives until the end. The intervals of length 1.531 in the table
on the right corresponds to the two tunnels of the 3D torus. In Table 3 we show
the results of our method applied to all the intervals of the barcode without
separating by dimensions. We can see in this case that we obtain the same
features as before plus the interval representing the void.

Table 2. Results of our method applied to the 0-barcode (table on the left) and the
1-barcode (table on the right) associated to the Vietoris-Rips filtration obtained from
400 points sampled from a 3D torus.

i
Hi

log(n)
Hrel(i) Feature

1.9 0.996295 0.442767 yes
0.396 0.996325 0.00449624 no
0.387 0.996351 0.00386916 no
0.387 0.996376 0.00389884 no
0.387 0.996403 0.00392887 no

... ... ... ...

i
Hi

log(n)
Hrel(i) Feature

1.531 0.918238 0.238936 yes
1.531 0.950752 0.302654 yes
0.27 0.952044 0.012028 no
0.261 0.953275 0.011451 no
0.234 0.954209 0.00869544 no

... ... ... ...



Table 3. Results of our method applied to the barcode (without differentiating dimen-
sion) associated to the Vietoris-Rips filtration obtained from 400 points sampled from
a 3D torus.

�i
�i
L

�′
i

�′
i

L′(i)
HL′(i)
log(n)

Hrel(i) Feature

1.9 0.0145219 0.268369 0.00207708 0.971259 0.0799069 yes

1.531 0.0117016 0.262812 0.00205432 0.972992 0.0554616 yes

1.531 0.0117016 0.257239 0.00203115 0.974775 0.0570812 yes

1.234 0.00943158 0.253276 0.00201566 0.975978 0.0385369 yes

0.396 0.00302667 0.252916 0.00201511 0.976021 0.00137745 no

... ... ... ... ... ... ...

Fig. 4. Barcodes (separated by dimension) computed from the Vietoris-Rips filtration
associated to a point cloud lying on a 3D torus. Left: lifetimes of connected components.
Middle: lifetimes of tunnels. Right: lifetimes of voids.

6 Conclusions and Future Work

In this paper, we have derived a method for separating topological noise from
topological features using the Shannon entropy of persistence barcode. We have
proven that the method is consistent by proving that in step i of the method
we replace i intervals by the same number of intervals but with the length that
maximizes the entropy. This way we “neutralize” the effect of such i intervals
and, by computing the difference of the entropies obtained in step i−1 and step
i, we can deduce if the interval at position i is a topological feature or not.

We intend to adapt our method to study RNA data from healthy and
unhealthy cells. We argue the method will let to highlight the topological features
that are formed by the most relevant genes associated to pathologies.
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