2,550,501 research outputs found

    On a Topic Model for Sentences

    Full text link
    Probabilistic topic models are generative models that describe the content of documents by discovering the latent topics underlying them. However, the structure of the textual input, and for instance the grouping of words in coherent text spans such as sentences, contains much information which is generally lost with these models. In this paper, we propose sentenceLDA, an extension of LDA whose goal is to overcome this limitation by incorporating the structure of the text in the generative and inference processes. We illustrate the advantages of sentenceLDA by comparing it with LDA using both intrinsic (perplexity) and extrinsic (text classification) evaluation tasks on different text collections

    Correction: A correlated topic model of Science

    Full text link
    Correction to Annals of Applied Statistics 1 (2007) 17--35 [doi:10.1214/07-AOAS114]Comment: Published in at http://dx.doi.org/10.1214/07-AOAS136 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stochastic Divergence Minimization for Biterm Topic Model

    Full text link
    As the emergence and the thriving development of social networks, a huge number of short texts are accumulated and need to be processed. Inferring latent topics of collected short texts is useful for understanding its hidden structure and predicting new contents. Unlike conventional topic models such as latent Dirichlet allocation (LDA), a biterm topic model (BTM) was recently proposed for short texts to overcome the sparseness of document-level word co-occurrences by directly modeling the generation process of word pairs. Stochastic inference algorithms based on collapsed Gibbs sampling (CGS) and collapsed variational inference have been proposed for BTM. However, they either require large computational complexity, or rely on very crude estimation. In this work, we develop a stochastic divergence minimization inference algorithm for BTM to estimate latent topics more accurately in a scalable way. Experiments demonstrate the superiority of our proposed algorithm compared with existing inference algorithms.Comment: 19 pages, 4 figure
    corecore