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This thesis deals with topic model evaluation and new topic detection in

microblogs. Microblogs are short and thus may not carry any contextual clues.

Hence it becomes challenging to apply traditional natural language processing

algorithms on such data. Graphical models have been traditionally used for

topic discovery and text clustering on sets of text-based documents. Their

unsupervised nature allows topic models to be trained easily on datasets meant

for specific domains. However the advantage of not requiring annotated data

comes with a drawback with respect to evaluation difficulties. The problem

aggravates when the data comprises microblogs which are unstructured and

noisy.

We demonstrate the application of three types of such models to mi-

croblogs - the Latent Dirichlet Allocation, the Author-Topic and the Author-

Recipient-Topic model. We extensively evaluate these models under different
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settings, and our results show that the Author-Recipient-Topic model extracts

the most coherent topics. We also addressed the problem of topic modeling

on short text by using clustering techniques. This technique helps in boosting

the performance of our models.

Topical alignment is used for large scale assessment of topical relevance

by comparing topics to manually generated domain specific concepts. In this

thesis we use this idea to evaluate topic models by measuring misalignments

between topics. Our study on comparing topic models reveals interesting traits

about Twitter messages, users and their interactions and establishes that joint

modeling on author-recipient pairs and on the content of tweet leads to qual-

itatively better topic discovery.

This thesis gives a new direction to the well known problem of topic

discovery in microblogs. Trend prediction or topic discovery for microblogs is

an extensive research area. We propose the idea of using topical alignment to

detect new topics by comparing topics from the current week to those of the

previous week. We measure correspondence between a set of topics from the

current week and a set of topics from the previous week to quantify five types

of misalignments: junk, fused, missing and repeated. Our analysis compares

three types of topic models under different settings and demonstrates how our

framework can detect new topics from topical misalignments. In particular

so-called junk topics are more likely to be new topics and the missing topics

are likely to have died or die out.

To get more insights into the nature of microblogs we apply topical
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alignment to hashtags. Comparing topics to hashtags enables us to make

interesting inferences about Twitter messages and their content. Our study

revealed that although a very small proportion of Twitter messages explic-

itly contain hashtags, the proportion of tweets that discuss topics related to

hashtags is much higher.
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Chapter 1

Introduction

A part of this thesis deals with extracting meaningful topics from

microblogs using unsupervised graphical models and evaluating their perfor-

mance with and without clustering the data. The other part explores detection

of new topics in microblogs using the idea of topical alignment.

We propose using the Author-Topic(AT) [26] and the Author-Recipient-

Topic(ART) [19] models for microblogs and compare it to the well known

Latent Dirichlet Allocation(LDA) based on several parameters. Automatic

validation of latent topics is a hard problem and thus we perform topic model

diagnostics using the idea of topic alignment between reference and latent

topics.

In this chapter we present an introduction to microblogs, topic extrac-

tion from data and the need to analyze and evaluate topics from online social

microblogs. We highlight the importance of topic model diagnostics while

using unsupervised models and present a formal thesis definition.
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1.1 Microblogs

Microblogs such as Twitter are a type of online social media systems

that allow users to post short messages called status updates to their homepage.

Status updates from Twitter are called tweets and they are often related to

an event or the user’s specific interest topic or his/her personal thoughts and

opinions. A word, phrase or topic that is tagged(contained in a tweet) at a

greater rate than other tags is said to be a trending topic. Trending topics

become popular either through a concerted effort by users, or because of an

event that prompts people to talk about one specific topic 1.

Twitter has gained lot of importance due to its ability to disseminate

information rapidly and more so during events related to natural disasters,

political turmoil or other such crises. Researchers are actively analyzing such

micro-blogging systems and search engines like Google have started including

tweets in their search results.

1.2 Research Motivation

With an average of 10000 tweets currently generated per second, ana-

lyzing them to understand what topics they discuss is an important research

study. However, applying traditional natural language processing techniques

that use syntactic and semantic models on such data is challenging mainly due

to following reasons [14].

1http://en.wikipedia.org/wiki/Twitter#cite note-105
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• Tweets are short in length with a 140-character limit and thus may not

carry many contextual clues about the content’s subject matter.

• Tweets are very informally written, often very unstructured and consist-

ing of ungrammatical text.

• Tweets may contain implied references to locations or things, thus mak-

ing named entity recognition difficult [27].

Topic models are generative models and a popular approach for mod-

eling term frequency occurrences in documents in a given corpus. The basic

approach of topic modeling is to describe a document as mixture of different

topics. Such models can be helpful in developing systems that can help in an-

alyzing the content of a stream of text. Using such a system would enable us

to identify the topic or event that a particular tweet is about. Thus using such

a system on large datasets would not only alert observers to crisis situations

such as diplomatic tensions or upcoming revolution ahead of time but also

predict trending topics and thus help in targeting ads and making appropriate

recommendations to users.

Since most of the user data available is not labeled, it is hard to evaluate

systems that learn from such data to make predictions or recommendations.

After the model is created, spot-checking of topics in an ad-hoc manner may

be used to analyze topic relevance. To overcome the problems of topic model

diagnostics with minimal human intervention, we present the idea of auto-

matically evaluating models by calculating topical alignment between a set of
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latent topics to a set of reference topics. Such a system would be scalable to

large data and usable for topics in any domain.

Further we introduce the idea of topic discovery in microblogs using

topical alignment between topics from the current week to those of previous

week. We propose ideas to discover topics and also to detect when topics

die out. Finally we evaluate our system on tweets and assess manually to

strengthen our findings.

1.3 Thesis Contribution

The thesis contribution can be briefly stated as:

1. We introduce the use of Author-Topic (AT) model and the Author-

Recipient-Topic (ART) model approaches for microblogs and compare

it to the Latent Dirichlet Allocation (LDA) baseline. We further im-

prove our results by clustering tweets before classifying.

2. We introduce the idea of topic alignment for topic model evaluation by

comparing the latent topics of one model with the outcome of another

model as reference. We show the performance of our method using var-

ious similarity metrics.

3. We introduce a system for topic discovery that uses the idea of topical

alignment in microblogs. In particular, we use a system that detects

topics generated weekly and not present in previous weeks and also topics

that were only present in previous week and thus died out.
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A topic is simply a collection of words that frequently co-occur. One

such model is Latent Dirichlet Allocation [5], which allows sets of observations

to be explained by unobserved groups that explain why some parts of the data

are similar. For example, if observations are words collected into documents,

then each document can be seen as a mixture of a small number of topics,

such that each word’s creation is attributable to one of the document’s topics.

We believe that clustering of tweets using topic models will help to

easily categorize them based on their properties. Using such clusters, we seek

to identify the topics or particular event about which the tweet is written.

Topic models do not make any assumptions on the ordering of the words in

a document and also disregard the grammatical structure. Such a model is

also known as the bag-of-words model. This approach is particularly suited to

handling irregularities in microblog messages.

Although LDA is a well-known tool for clustering documents based

on topics, it does not perform well on microblogs due to the reasons discussed

above. Thus, we experimented with two directed graphical models, the Author-

Topic (AT) model and the Author-Recipient-Topic (ART) model. The AT

model [26] learns topics conditioned on the mixture of authors that composed a

document, this has been discussed further in section 3.1. Experimental results

show that the state-of-the-art Author-Topic model fails to model hierarchical

relationships between entities in social media settings [11]. The ART model

[19] is similar to the AT model, but with the crucial enhancement that it

conditions the per-message topic distribution jointly on both the authors and

5



recipients, rather than on individual authors. Thus the discovery of topics in

the ART model is influenced by the social structure in which messages are

sent and received. This setting has been used previously for role discovery in

social networks [19]. We present the ART model for microblogs and analyze

its performance with other models. To the best of our knowledge, our work

is the first time the ART model has been implemented for topic discovery

in microblogs. Our results and analysis have enabled us to make important

inferences about Twitter messages, users and their interactions.

1.4 Publications

During the course of this masters thesis we have the following works

published or under submission:

[1] (Accepted) Nazneen Fatema Rajani, Kate McArdle, Jason Baldridge.

2014. Extracting Topics Based on Authors, Recipients and Content in

Microblogs. To appear in proceedings of the 37th Annual ACM SIGIR

Conference. Gold Coast, Australia

[2] (Under preparation) Nazneen Fatema Rajani, Jason Baldridge. 2014.

New Topics Detection in Microblogs using Topical Alignment. To be

submitted to the Conference on Empirical Methods in Natural Language

Processing (EMNLP). Doha, Qatar.
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Chapter 2

Background and Related Work

In this chapter we explain a few background concepts that are necessary

to understand this thesis work. We also review some recent research in the

broad areas of analyzing online social media using topic models and new topic

discovery in microblogs.

2.1 Background

Bishop in his book defines probabilistic generative models for statistical

machine learning and natural language processing in the following way. A

model that specifies a joint probability distribution over observation and label

sequences and can be used for randomly generating observable data given

some prior probability distribution [3]. Generative models are used in machine

learning for either modeling data directly such as modeling observations drawn

from a probability density function or as an intermediate step to forming a

conditional probability density function . Baye’s rule can be used to form a

conditional distribution from a generative model. N-gram language models,

Näive Baye’s classifiers and topic models are few examples of generative models

used in machine learning.
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We will briefly discuss these generative models in order to give back-

ground to our work:

• N-gram language models: A statistical language model assigns a

probability to a sequence of m words P (w1, . . . , wm) by means of a prob-

ability distribution. In particular, they estimate probability of a word

given its prior context, for example, P(phone|Please turn off your cell).

An N-gram model uses only N−1 words of prior context. However, the

number of parameters required grows exponentially with the number of

words in prior context. The Markov assumption is that the future be-

havior of a dynamical system only depends on its recent history. In

particular, in a kth-order Markov model, the next state only depends

on the k most recent states, therefore an N-gram model is a N−1-order

Markov model.

• Naive Baye’s classifiers: They are simple probabilistic classifiers based

on applying Bayes’ theorem with independence assumptions. A more de-

scriptive term for the underlying probability model would be that the

features used in the model are independent. The probability model for a

classifier is a conditional model P (C|F1, . . . , Fn) over a class variable C

conditional on several feature variables F1 through Fn. The assumption

this classifier makes is that each of the features F1 . . . Fn are independent

of each other and conditional on this assumption, it estimates the class

C which is very often binary.
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• Topic models: Topic models are generative models and a popular

method for modeling term frequency occurrences for documents in a

given corpus. The basic idea is to describe a document as mixture of

different topics. A document typically concerns multiple topics in differ-

ent proportions. For example, in a document that is 90% about fruits

and 10% about vegetables, there would probably be about 9 times more

words related to fruits than words about vegetables. A topic is simply a

bag of words that occur frequently with each other. A topic model cap-

tures this intuition in a mathematical framework based on the statistics

of the words in each document, what the topics might be and what each

document’s balance of topics is.

2.1.1 Topic Models and their Characteristics

Latent Dirichlet allocation is a generative model that allows sets of ob-

servations to be explained by unobserved groups which explain why some parts

of the data are similar [5]. For example, if observations are words collected

into documents, it posits that each document is a mixture of a small number of

topics and that each word’s creation is attributable to one of the document’s

topics. Latent semantic analysis(LSA) is a technique in information retrieval

and natural language processing, in particular in distributional semantics for

analyzing relationships between a set of documents and the terms they contain

by producing a set of concepts related to the documents and terms [15].

Kireyev et al. discussed that topic models have certain properties that

9



make it suitable to analyze Twitter data [14]. These are summarized below:

Topic models do not make any assumptions about the ordering of words known

as bag-of-words model and it disregards grammar as well [26]. This is partic-

ularly suitable to our work because we handle Twitter messages that are very

unstructured and noisy with regards to language and grammar. Each docu-

ment is represented as a vector of words that describes its distribution over

the topics. This representation is convenient to compute document similarity

and perform new topic detection. Training a topic model is easy since it uses

unsupervised learning, that is it learns from unannotated data. It saves the

effort required to create labeled data and train classifiers that learn on such

data. Topic models are useful for identifying unobserved or latent relationships

in the data. This makes dealing with abbreviations and misspellings easy by

using topic models.

2.2 Related Work

Topic models have been applied to a number of tasks that are relevant

to our thesis contribution. We will briefly describe three categories and cite a

few examples in each.

2.2.1 Topic Models for Information Discovery

Topic models for information discovery is a well known and extensive

area of research but also one with diverse applications. Phan et al. present

a framework to build classifiers using both a set of labeled training data and

10



hidden topics discovered from large scale data collections [21]. They provide

a general framework to be applied across different data domains. Steyvers et

al. in their 2007 paper present a generative model to discover topics covered

by papers in PNAS [25]. These topics were then used to identify relationships

between various science disciplines and finding latest trends. Griffiths et al.

describe an unsupervised learning algorithm that extracts both the topics ex-

pressed in large text collection and models how the authors of the documents

use those topics [10]. Such author-topic models can be used to discover topic

trends, finding authors who most likely tend to write on certain topics and so

on. The Author-Recipient-Topic model is a Bayesian model for social network

analysis that discovers topics in discussions conditioned on sender-recipient

relationships in the corpus [19].

2.2.2 Topic Models for Text Categorization

Text categorization based on word clustering algorithms was described

in [2]. Dhillon and others introduce k-means clustering for sparse data [8]. A

topic vector based space model for document comparison was introduced and

discussed in [1]. Lee et al. explore supervised and unsupervised approaches to

detect topic in biomedical text categorization. They describe the Naive Bayes

based approach to assign text to predefined topics and perform topic based

clustering using unsupervised hierarchical clustering algorithms.

11



2.2.3 Evaluating Topic Models

Topic model evaluation is another area of research that has gained a lot

of attention. Wallach et al. explore the idea of evaluating topic models relative

to other topic based models as well as to other non-topic based generative

model. The Chib-style estimator and “left-to-right” algorithm presented by

them provides a clear methodology for accurately assessing and selecting topic

models [28]. Chuang and others develop a framework for scale assessment of

topic relevance for domain specific topics. They do this by using the idea of

topical alignment between latent topics and reference concepts developed by

experts in the domain [7].

2.2.4 Topic Models and Online Social Media

Recent research has started to look at content related aspects of online

social media and specifically Twitter. Ramage et al. present use of a partially

supervised learning model (Labeled LDA) to characterize Twitter data and

users [22]. They classify tweets based on roughly four dimensions such as

substance, style, social and status. The topic based clustering approach by

Kireyev and others identifies latent patterns like informational and emotional

messages in earthquake and tsunami data sets collected from Twitter [14].

12



Chapter 3

System Design and Implementation

This chapter gives an overview of the design and implementation of our

system. It also discusses the methodologies used in our implementation and

the pre-processing of our dataset. In the first section we explain the system

components that directly affect the system.

3.1 System Design

Figure 3.1 gives a very high level overview of the main components our

system.

Topic Modeler

Firstly we describe the most important component of our system, the topic

modeler. As described in Chapter 1, the job of a topic modeler is to iden-

tify and group words that tend to appear together into ‘topics’ based on a

probability distribution. Our system uses three types of topic modelers, LDA,

AT and ART. We introduce the terminology used and describe each of them

briefly. We use the following terminology: a set of documents forms a cor-

pus. The set of unique words that are used in the corpus forms the corpus’s

13



Figure 3.1: System design overview.

vocabulary, while we refer to the collection of words that appear in a given

document as word tokens. The word tokens found in a document are not nec-

essarily unique words from the vocabulary. For example, a tweet that appears

as “twinkle twinkle little star” uses the following words from the vocabulary:

twinkle, little, star. The word tokens in this tweet are: twinkle, twinkle, little,

star.

Latent Dirichlet Allocation: Latent Dirichlet Allocation was first in-

troduced by Blei et al. [5] and provided a probabilistic foundation for

Latent Semantic Analysis, improving on LSA. LDA models each text

document in a corpus as a mixture of an underlying set of topics. Figure

3.2 displays a graphical representation of LDA. Each document d has a

multinomial distribution θd of topics, and each topic z has a multinomial

distribution φz of words. A document’s topic distribution is randomly

sampled from a Dirichlet distribution with hyper-parameter α, and each

topic’s word distribution is randomly sampled from a Dirichlet distribu-
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Figure 3.2: LDA, AT, and ART models. Modified from [19].

tion with hyper-parameter β. Thus, topic assignment in LDA is modeled

solely on the document’s word token content.

Author-Topic Model: The Author-Topic model [26] builds on LDA,

by modeling a document’s topics based on the document’s content, as

in LDA, and by conditioning on the document’s authors. Figure 3.2

displays a graphical representation of the AT model. Each document

d has a set of observed authors ad. A document’s topic distribution is

influenced by this set of authors. To generate each word token in the

document, an author x is randomly and uniformly sampled from ad,

and then a topic z is sampled from the author’s topic distribution θx,

which comes from a Dirichlet distribution with hyper-parameter α. From

this topic, the word token is sampled from the topic’s word distribution
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φz, which comes from a Dirichlet distribution with hyper-parameter β.

Thus, topic assignment in the AT model is based on the document’s

authors and word token content. A useful application of the AT model

is predicting co-authors of a document, book or paper [23].

Author-Recipient-Topic Model: The Author-Recipient-Topic model

[19] builds on LDA and AT, by modeling a document’s topics based

on the document’s content, as in LDA, the document’s authors, as in

AT, and the document’s recipients. Thus, ART is only appropriate for

documents with specific recipients (e.g., emails) and is not appropriate

for documents without recipients (e.g., scholarly articles). Figure 3.2

displays a graphical representation of ART. Each document d has a set

of authors ad and a set of recipients rd. A document’s topic distribution

is influenced by the set of observed author-recipient pairs. To generate

each word token in the document, an author-recipient pair ar is randomly

and uniformly sampled from this set, and then a topic z is sampled from

the author-recipient pair’s topic distribution θar, which comes from a

Dirichlet distribution with hyper-parameter α. From this topic, the word

token is sampled from the topic’s word distribution φz, which comes from

a Dirichlet distribution with hyper-parameter β. Thus, topic assignment

in the ART model is based on the document’s authors, recipients, and

word token content. A useful application of the ART model is role

discovery and understanding social links as described by [19].
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Our topic modeler has three stages:

1. Input: This step involves processing and filtering the raw tweets de-

scribed in Section 3.2 into a format acceptable by MatLab Topic Model-

ing Toolbox 1. This step also removes stop words from the corpus before

feeding it as an input to the topic modeler.

2. Training: To train the LDA and Author-Topic models, we used the

Matlab Topic Modeling Toolbox, which uses Gibbs sampling to approx-

imate the inference step of extracting topics, since it cannot be done

exactly for LDA and similar models [19]. To train the Author-Recipient-

Topic model, we note that the approach is identical to the Author-Topic

model, if one considers a document’s author-recipient pair to be its au-

thor. Thus, we used the Toolbox’s Author-Topic implementation to

perform ART modeling, providing author-recipient pairs instead of au-

thors. This stage also requires setting the hyper-parameters α and β

appropriately and supplying the number of topics N to be used. α is the

prior on the per-document topic distributions while β is the prior on the

per-topic word distribution.

3. Output: The output of a topic modeler is a list of topics N containing

top words along with probabilities of them belonging to that particular

topic. The distribution of words in each topic helps in making inferences

1http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
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Figure 3.3: Example of association of words to topics.

about that topic. Figure 3.3 gives an example of the output obtained by

running the topic modeler on a set of tweets.

3.2 Dataset

This section discusses the tweet corpus and the various pre-processing

steps done on the raw data. All our results and analysis are based on the below

mentioned dataset. Our dataset comprises tweets from August to October

2008. We used the Twitter Spritzer to extract an initial set of 160, 000 tweets

from this time period. We also use a set of 80, 520 tweets from February 2009

for some of our weekly analysis and has been explicitly mentioned wherever

used.

We now describe the filtering we performed on the set of tweets and

the word tokens within each tweet.

3.2.1 Filtering on Tweets

The set of tweets was then filtered in two ways, which we describe

here. The first filtering we performed was for @mention. We compare the

relative performances of the topic models described in Section 3.1, one of
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which is the Author-Recipient-Topic Model. This model requires that every

document have at least one recipient, so we filtered our original dataset to

only keep tweets that include @mention, which is the way in which a tweet

author directs his tweet at a specific user. We then consider the Twitter handle

mentioned in @mention to be the recipient of the tweet. In the case of multiple

@mention inclusions in a single tweet, we consider each Twitter handle listed

as separate recipients. Thus, each document consists of three attributes: the

tweet’s content, the tweet’s author, and a set of one or more recipients. We

call this set of tweets the Recipient Dataset. Figure 3.4 is an image of a famous

Twitter conversation.

The second filtering we performed was for hashtag. Our motivation

for this filtering comes from the paper by Ramage et al., which suggests that

the performance of topic modeling on tweets is generally poor, due to the

inherently short nature of each document: every tweet is restricted to 140

characters [22]. Mehrotra and others show that one approach to overcom-

ing this pitfall is to cluster together tweets that contain the same hashtag [20].

Tweets that contain multiple hashtags belong to multiple clusters and depend-

ing on hashtags they contain, are copied into each of those documents. Each

cluster constitutes one document, and the topic model is trained on this set

of documents. The motivation behind tweet pooling is that individual tweets

are very short and hence treating each tweet as an individual document does

not present adequate term co-occurrence data within documents. Aggregating

tweets which are similar in some sense (in our case semantically) enriches the
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Figure 3.4: Example of a conversation on Twitter.

20



content present in a single document from which the LDA can learn a better

topic model. For completeness, we compare the performance of the topic mod-

els described in Section 3.1 when trained on an unclustered dataset to when

trained on a clustered dataset. In order to make such comparisons, we are

required to remove any tweets from the Recipient Dataset that do not have

at least one hashtag in the tweet’s content. We call the resulting dataset the

Single-Tweet Dataset, as each document consists of a single tweet (whose con-

tents contain at least one hashtag), a single author, and a set of one or more

recipients. The Single-Tweet Dataset consists of 7288 tweets, 1176 unique

authors, and 7830 unique author-recipient pairs.

We create a second dataset such that the tweets in the Single-Tweet

Dataset are clustered into documents by hashtag. In the case of a single

tweet with multiple hashtag inclusions, the tweet is included in the document

corresponding to each hashtag. We call this dataset the Clustered Dataset.

Figure 3.5 gives an example of tweets containing #sxsw clustered under the

hashtag #sxsw. In this dataset, each document consists of a set of one or more

tweets (each tweet of which contains the same hashtag), one or more authors

(such that the number of authors is less than or equal to the number of tweets),

and one or more recipients (such that the number of recipients is greater than

or equal to the number of authors). The Clustered Dataset consists of 2563

documents. The numbers of unique authors and unique author-recipient pairs

are the same as for the Single-Tweet Dataset, since the underlying set of tweets

is the same in both datasets.
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Figure 3.5: Tweets containing #sxsw pooled together to form a Clustered
Dataset.

3.2.2 Filtering on Word Tokens

On both the Single-Tweet Dataset and the Clustered Dataset, we per-

form filtering on the word tokens contained in the tweets. First, we remove

any URLs in the tweets’ contents. Due to the 140-character limit imposed

on tweets, many users use shortened URLs, and thus it is not appropriate to

contain URLs in our dataset. Next, for word tokens that have an apostrophe

followed by a single character, we remove the apostrophe and following char-

acter. This allows us to consider, for example, nouns and their possessive form

as the same word in the vocabulary. Next, we remove every word token that

is of the form “@mention”, to remove recipients from the tweet’s content. We

also get rid of any word tokens numbers and non-alphanumeric symbols. Fi-

nally, we also remove stop words or frequently occurring words in tweets that

do not say much about the tweet’s content. The list of stop words for tweets

is slightly different from the standard English stop words and is based on the

language model for tweets. Table 3.1 displays some stop words from the list.

Our final Single-Tweet Dataset consists of 13, 104 unique words, which form
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Twitter corpus stop words
twitter,twitpic,et,hi,rt,lol,get,the,yourself,without,eg,one...

Table 3.1: List of stop words.

the vocabulary, and 49, 387 word tokens. The final Clustered Dataset consists

of 12, 963 unique words and 57, 873 word tokens.

3.3 Implementation

This section discusses the core implementation of our goal to discover

new topics [18] by using a suitable topic modeler based on an appropriate

input configuration. To achieve this we need to evaluate the topics obtained

as output from the modeler. As mentioned in Chapter 1 this is not easy

since the model trains in an unsupervised manner. Thus we use the idea of

topic model diagnostics described in [7] by Jason Chuang and others, that

assesses domain relevance via topical alignment. They built a repository of

domain-concepts(reference topics) using expert judgment and quantify topical

alignment between a set of latent topics and a set of reference concepts as

follows. A topic resolves to a concept if a one-to-one correspondence exists

between the two. A misalignment exists when models produce junk or fused

topics or when reference concepts are missing or repeated among the latent

topics. They used crowd-sourcing to evaluate topical alignment between latent

and reference topics.

We implement the above idea with slight modifications and without

any manual intervention in the following manner. Firstly, we evaluate the
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performance of AT and ART topic models(latent topics) on microblogs by

comparing them to the LDA(reference topics) baseline using topical alignment.

This also allows us to make important inferences and analysis about the topic

modeler used and characteristics of microblogs as discussed in Chapter 4. Next

we use the topical alignment technique for new topic detection and prediction,

which is the most important contribution of this thesis. We describe the steps

that lead us to topic prediction in sections below.

3.3.1 Topical Alignment

Topical alignment is the method of aligning latent topics to reference

topics or concepts where every topic is a multinomial distribution over words.

The likelihood that a latent topic would match a reference topic is the prob-

ability of how similar the latent topic is to a reference topic. The output of

a topic modeler is for every word in the document, the probability that it

belongs to a particular topic. Table 3.2 displays a sample output produced

by a topic modeler for ten random words and the probabilities with which

they belong to either Topic 1 or Topic 2. Using these probabilities, we can

represent topics in a vector space model. Each dimension corresponds to a

separate unigram and a topic vector comprises of every unigram’s probabil-

ity associated with that topic. Therefore the number of dimensions is equal

to the size of vocabulary for the dataset. Once the topics are represented as

vectors, various similarity measures can be used to find the nearest match be-

tween topics. Cosine similarity is one such metric and is used for calculating
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Topic 1 Topic 2
bad 0.00101 0.00006

email 0.00078 0.00029
everyday 0.00054 0.00001

commercials 0.00078 0.00006
advertising 0.00078 0.00005
batteries 0.00054 0.00054
patrick 0.00078 0.00006

embarrassing 0.00054 0.00006
walk 0.00030 0.00078

digital 0.00006 0.00030

Table 3.2: Probabilities that a unigram is associated with Topic 1 or Topic 2.

topic similarities. Equation 3.1 gives the cosine similarity measure between

topics T1 and T2. Chuang et al. in [7] introduced another similarity metric

to improve upon the cosine similarity called the Rescaled dot product defined

below.

Given a word probability distribution X, the scalar xi denotes the probability

for term i in topic X.
−→
X is a vector consisting of all xi values in descending

order,
←−
X is a vector of xi in ascending order then rescaled dot product is

Rescaled dot product = P ·Q−dmin

dmax−dmin

dmax =
−→
P ·
−→
Q

dmin =
−→
P ·
←−
Q

Rescaled dot product definition [7].

sim(T1, T2) =
T1 · T2

‖T1‖‖T2‖
(3.1)

The similarity calculation between topics gives us an m × n matrix of

all possible pairings among m reference topics and n latent topics. Each entry
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Reference topic 1 0.1 0.7 0.2 0.0
Reference topic 2 0.5 0.2 0.0 0.3
Reference topic 3 0.6 0.1 0.8 0.3

Latent topic 1

Junk Ṗ (k = 0) : 1/3

Fused Ṗ (k >= 2) : 2/3
˙P (K) is the likelihood

of observing k matches when
comparing Latent topic 1 to

all reference topics.

Reference topic 3

Missing P̈ (k = 0) : 1/2

Fused P̈ (k >= 2) : 1/2

P̈ (K) is the likelihood
of observing k matches when
comparing Reference topic 3

to all latent topics.

Table 3.3: In a correspondence matrix, each entry pr,l represents the probabil-
ity that a reference topic r and a latent topic l are equivalent. Misalignment
scores measure how much topical alignment deviates from an optimal one-to-
one correspondence. Comparing a latent topic to all reference topics, junk
and fused scores measure how likely the topic matches exactly zero, or more
than one reference topic. Missing and repeated scores measure how likely a
reference topic matches exactly zero, or more than one latent topic.

pr,l is treated as an independent Bernoulli random variable that represents the

likelihood that a latent topic vector representation would be equivalent to a

reference topic vector representation. Each of these entries are independent

events. We map similarity scores between latent and reference topic vectors

into matching likelihoods using thresholding and is discussed in detail in Chap-

ter 4. A correspondence is considered optimal when every latent topic vector

maps one-to-one to a reference topic vector and deviations from optimal ar-

rangement leads to misalignments. We consider 4 types of misalignments for

a correspondence matrix as discussed in [7] and shown in Table 3.3.

Let Ṗl(k) be the likelihood that there are exactly k matches after com-

paring a latent topic l to all m reference topics. Similarly let P̈r(k) be the

likelihood that there are exactly k matches after comparing a reference topic

r to all n latent topics. Then the 4 types of misalignments defined by [7] are:

Junk: The junk score for a latent topic l is the probability Ṗl(0), that
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is the latent topic has no matching reference topic.

Fused: The fused score for a latent topic l is the likelihood
∑n

k=2 Ṗl(k),

that is the latent topic matches two or more reference topics.

Missing: The missing score for a reference topic r is the probability

P̈r(0), that is the reference topic has no matching latent topic.

Repeated: The repeated score for a reference topic r is the likelihood∑m
k=2 P̈r(k), that is the reference topic matches two or more latent topics.

3.3.2 New Topic Prediction

Topical alignment as discussed above helps us in identifying misalign-

ments between topics. We use this technique to predict new topics in tweets

in the following way. We consider tweets on a weekly basis and thus divide our

dataset based on the date each tweet was composed. Consider we have tweets

from 3 continuous weeks in our dataset and so all our tweets will fall into one

of the 3 buckets depending on when they were composed. Next we use the

topic modeler and a suitable configuration to obtain lists of word probability

distribution for each topic for each week. We then represent the topics for

each week as vectors and compute similarities between them using the metrics

described in Section 3.3.1. Topics from week 1 serve as reference topics to

latent topics of week 2 and topics from week 2 can be used as reference topics

to week 3 latent topics. Then similarity is mapped to likelihoods and we com-

pute misalignments between topics of the week under consideration to those
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Figure 3.6: Step-by-step overview of new topic prediction for microblogs.

of the previous week. If topics from week 2 are similar in anyway to topics

from week 1 then they will either match one-to-one or be repeated or fused.

Topics from week 2 that do not find a match to topics from week 1 or as per

our definition are junk maybe considered as new topics for week 2 depending

on their likelihoods. Figure 3.6 gives the step-by-step process of new topics

prediction in our system.

Blei and Lafferty introduced the idea of “Dynamic Topic Models” to

track and analyze evolution of topics of a collection of documents over time [4].

As discussed before the order of the words in a document and the order of the

documents in the corpus are irrelevant in the training of the LDA, AT and ART

topic models. Whereas in dynamic topic models albeit the order of the words

is considered exchangeable, the order of the documents plays a fundamental

role. The documents are assumed to be grouped by time slice (e.g.: years)

and it is assumed that the documents of each group come from a set of topics

that evolved from the set of the previous slice. Thus the hyperparameters

distributions αt+1 and βt+ 1, k are generated from αt and βt,k respectively.

28



The authors of the paper assume every generated topic survives and no topics

die out at any time. Our system does not make these assumptions and thus

is able to detect topics that die out while simultaneously detecting new topics

that were generated. The authors also argue that applying Gibbs sampling

to do inference in their model is more difficult than in static models, due to

the nonconjugacy of the Gaussian and multinomial distributions. Since the

new topic detection system proposed by us uses topical alignment, it does not

require the more complicated estimation of parameters.

This technique not only allowed us to predict new topics from tweets

but also leads to important inferences based on our analysis which are discussed

in detail in Chapter 4. We also analyzed latent topics obtained from a topic

modeler vs vector representation of hashtags. Going back to our definition

of Clustered Dataset in Section 3.2, consider all the tweets that contain a

particular hashtag. After filtering these tweets and getting rid of stop words,

the vector representation of that hashtag is the probability distribution of

all unigrams that occur in those tweets, as discussed in Section 3.3.1. These

hashtag vector representations serve as reference topics to topics obtained from

a topic modeler. Computing likelihoods between latent topics and hashtag

vectors not only allows us to predict new hashtags that have a tendency of

trending but also gives us insight into characteristics of microblogs which we

discuss in the next chapter.
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Chapter 4

Experimental Analysis and Results

This chapter deals with experimental results obtained by our system

under various settings. It also discusses various evaluation techniques to un-

derstand how well our system performs on microblogs. Finally this chapter

also analyzes the results obtained to make important claims and prove them

for microblogs.

4.1 Experimental Results

In this section we evaluate the AT and ART topic models that we

proposed for microblogs in two ways, one by using an evaluation metric and

second by using topical alignment. We also evaluate topic discovery in mi-

croblogs using topical alignment. All results in this chapter are based on the

dataset discussed in Section 3.2 unless otherwise stated. N denotes the num-

ber of latent topics in a topic model; α and β denote topic and term smoothing

hyperparameters, respectively.
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4.1.1 Results using an Evaluation Metric

We present our results performing topic modeling on the Single-Tweet

Dataset and the Clustered Dataset. To train the LDA and Author-Topic mod-

els, we used the Matlab Topic Modeling Toolbox,1 which uses Gibbs sampling

to approximate the inference step of extracting topics, since it cannot be done

exactly for LDA and similar models [19]. To train the Author-Recipient-Topic

model, we note that the approach is identical to the Author-Topic model, if one

considers a document’s author-recipient pair to be its author. Thus, we mod-

ified the Toolbox’s Author-Topic implementation to perform ART modeling,

providing author-recipient pairs instead of authors.

4.1.1.1 Model Settings

For all models, we set the model hyper parameters α and β to 50
|topics|

and 200
|vocabulary| , respectively. In different experiments that we ran on training

the models, we used either 500 or 1000 iterations in Gibbs sampling, and we

extracted one of the following numbers of topics: 10, 20, 30, 40, 50, 75, 150,

300, 500. We trained three of the models, LDA, AT, and ART, on both the

Single-Tweet Dataset and the Clustered Dataset.

4.1.1.2 Model Evaluation

To evaluate our results, we implemented a function in Matlab to cal-

culate a Pointwise Mutual Information (PMI) score for a trained topic model.

1http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
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PMI measures the coherence of the topics that are created by a trained topic

model, by determining the statistical independence of two words from the same

topic appearing together in the same document [20]. The PMI for a pair of

words is

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)

In our case, for both the Single-Tweet Dataset and the Clustered Dataset,

when calculating PMI we consider each tweet to be a document, so we calculate

PMI using empirical probabilities of the Single-Tweet Dataset. The probability

of a single word, p(wi), is the ratio of the number of tweets that contain word

wi to the total number of tweets. The probability of a pair of words, p(wi, wj),

is the ratio of the number of tweets that contain both words wi and wj to the

total number of tweets.

To calculate PMI for a given model, we used the approach outlined

in [20]: for each topic, calculate the PMI of each of the possible word pairs

among the ten words with the highest probabilities. The PMI for the given

topic is the average of the PMI scores for the word pairs, and the PMI for

the given model is the average of the PMI scores for the topics. A higher

PMI score indicates better topic coherence, and thus we compare each of the

trained models based on their PMI scores.

Table 4.1 displays the top 10 words belonging to topic related to “Austin”

for each of the LDA, AT and ART topic models.

Our results are displayed in Table 4.2 and Table 4.3. For each number
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LDA AT ART
hit time sxsw
stuff sxsw love
life apple panel
night real austin
key store row
takes app party
austin talk rocks
uh current things
disappointed click lots
start austin student

Table 4.1: Top 10 words belonging to topic related to “Austin” for each of the
LDA, AT and ART topic models.

Model Dataset
PMI score for the following number of topics:

10 20 30 40 50 75 150 300 500
LDA Single-Tweet 0.565 1.002 1.317 1.528 1.715 1.921 2.093 2.152 2.244
LDA Clustered 0.770 1.168 1.479 1.615 1.778 2.066 2.596 3.269 3.169
AT Single-Tweet 0.634 0.932 1.315 1.372 1.609 1.954 2.232 2.723 2.982
AT Clustered 0.712 0.994 1.215 1.514 1.607 1.973 2.377 3.298 3.336
ART Single-Tweet 0.523 1.047 1.291 1.555 1.724 1.981 2.412 2.272 2.412
ART Clustered 0.639 0.953 1.243 1.555 1.790 2.103 2.538 2.769 2.867

Table 4.2: PMI scores for LDA, AT and ART models trained on the Single-
Tweet and Clustered Datasets, with 500 iterations.

of topics, the model and dataset combination with the highest PMI is displayed

in bold.

Our results indicate that, as expected, the Clustered Dataset results in

better-trained topic models than the Single-Tweet Dataset, regardless of the

number of topics. By comparing the results with 500 iterations in Table 4.2

and with 1000 iterations in Table 4.3, we do not see a big difference, indicat-

ing that our models are converging by 500 iterations. We compare the relative
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Model Dataset
PMI score for the following number of topics:

10 20 30 40 50 75
LDA Single-Tweet 0.624 1.047 1.332 1.545 1.688 1.913
LDA Clustered 0.746 1.119 1.489 1.604 1.702 2.175
AT Single-Tweet 0.586 0.962 1.266 1.407 1.639 1.933
AT Clustered 0.646 1.039 1.196 1.466 1.662 2.024
ART Single-Tweet 0.612 1.033 1.330 1.546 1.742 1.969
ART Clustered 0.668 1.002 1.321 1.507 1.775 2.191

Table 4.3: PMI scores for LDA, AT and ART models trained on the Single-
Tweet and Clustered Datasets, with 1000 iterations.

performance of LDA, AT and ART across different numbers of topics, by plot-

ting the normalized PMI scores for each of the number of topics, as shown in

Figures 4.1 and 4.2. Here we focus on the models that used 500 iterations. Our

results suggest that LDA performs better than the other models on clustered

tweets for a small number of topics, while ART performs better than the other

models on a mid-range number of topics, and AT performs better than the

other models on a higher number of topics.

4.1.2 Results using Topical Alignment

Topical alignment can be used for large-scale assessment of topical

relevance [7] without human intervention. Most microblog data available is

unlabeled and thus topic models need to be trained in an unsupervised manner.

Although there is an advantage in learning without annotated data, the down-

side is that it becomes difficult to evaluate them against a manually labeled

gold standard. Crowdsourcing could be used to evaluate the performance of
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Figure 4.1: Normalized PMI scores for LDA, AT and ART on the Single-Tweet
Dataset (500 iterations).

Figure 4.2: Normalized PMI scores for LDA, AT, and ART on the Clustered
Dataset (500 iterations).
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topic modelers, however, it would be even harder if not impossible to evaluate

the performance of the crowd. By the very nature of microblogs, it is difficult

to understand what the user was trying to convey and may not be the same

as the output of crowdsourcing. We thus evaluate the performance of AT and

ART models on microblogs using topical alignment by comparing them to the

well known LDA baseline.

We consider the topics generated by LDA to be reference topics and

those by AT and ART modelers to be latent topics. As discussed in Section

3.3.1 we generate a correspondence matrix between the AT or ART topic

vectors and LDA topic vectors using cosine-similarity. We vary the number

of topics for each of the topic modelers between 100 to 600, N ∈ [100, 600]

and α = 5/N , β = 0.25. Figure 4.3 visualizes the correspondence matrix thus

obtained. The color intensity for the diagonal shows the likelihood of a match

to be > 0.2. The matrix visualization displays that there is a greater chance

of matching along the diagonals for both AT and ART topics to LDA topics.

We discuss this in detail in Section 4.2.

We convert the similarity score in the correspondence matrix between

topics to likelihood by using a threshold of 0.5. Thus if two topic vectors have

a similarity score >= 0.5 then it is likely that they correspond to the same

topic. Using this, we obtain misalignments between topics produced by AT

and LDA or ART and LDA topic models respectively, Figure 4.4. As expected,

a lot of topics were repeated when the AT or ART models were compared to

LDA and the ratio of the number of fused and repeated topics for the ART
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Figure 4.3: Correspondence matrix between latent AT or ART topic vectors
and reference LDA topic vectors. Color intensity shows the likelihood that
reference topics and latent topics are equivalent. The x-axis shows the number
of LDA topics and y-axis shows the number of AT topics and ART topics
respectively.
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Figure 4.4: Topical alignment to LDA reference topics for N ∈ [100, 600]
topics(x-axis) and α = 5/N and β = 0.25. The y-axis shows the fraction of
AT or ART topics that have a single matching(resolved), multiple matching
LDA topics(repeated) or are subsumed by one(fused) or multiple fused LDA
topics(fused and repeated).

model were higher than the AT model. These observations led us to make

useful inferences which are discussed in detail in Section 4.2.

Figure 4.5 shows the percentage of resolved topics for AT and ART

models when aligned with the LDA reference topics. The highest percentage

of resolved topics for both models is obtained for 100 topics, which means that

for a small number of topics, the AT and ART models correspond one-to-one

most with the LDA topics. Thus we can infer that for smaller number of

topics these models detect similar cluster of unigrams which talk about the

same topic. This would mean that there are fewer major topics of discussion on

Twitter and most users tend to talk about these topics. Secondly considering

LDA as a reference to AT and ART models, the plot strengthens our claim

38



Figure 4.5: Percentage of AT and ART resolved topics to LDA topics, x-axis
represents N ∈ [100, 600].

that LDA performs better for smaller number of topics because it only models

based on the content of the blog.

In order to ensure our system is robust to topic matching, we use the

method to estimate and removing topical correspondences that can be at-

tributed to random chance by Chuang and others [7]. We consider the cor-

respondence matrix to be a combination of a noise matrix and a definitive

matrix. The definitive matrix has entries 0 or 1 and the noise matrix repre-

sents chance probability. We assume that the likelihoods of topics matching

are randomly drawn from the definitive matrix (1−γ) of the time and from the

noise matrix γ of the time, where γ ∈ [0, 1]. The final step is to estimate the

parameter γ for optimal value which represents the amount of matches that

can be attributed to noise. The optimization problem is discussed in detail in

the supplementary material for [7].
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4.1.3 Topic Discovery using Topical Alignment

While [7] performs topical alignment between topics produced by AT

or LDA models and a manually created set of concepts by experts, the idea

of topical alignment between two topic models has never been done before

and has been proposed for the first time in this thesis. Such type of topical

alignment gives a new direction to the research of topic discovery in microblogs

and the results obtained by us is described below.

We start with tweets from February 2009 and divide it into weeks, thus

obtaining 4 disjoint corpus of tweets totaling 80, 520. Next we perform the

filtering and pre-processing for each set as described in Section 3.2. We vary

the number of topics between N ∈ [100, 600] and α = 5/N , β = 0.25. Then we

perform topical alignment by considering week 1 topics as reference to week

2 latent topics and week 2 to be reference to week 3 and so on. Figures 4.6

and 4.7 show the topical misalignments for weekly comparison of AT topics

and ART topics respectively. Looking at the plots its not surprising that most

topics are repeated for a week when compared to the previous week. However

what is more interesting is that if we look at the junk topics for a week, it

is the likelihood that there were no matching reference topics found for those

topics. This would mean that these topics never occurred before this week and

thus may be topics of interest or potential new topics. Also the proportion

of junk topics is extremely small compared to other types of misalignments

and decreases even further as the number of topics increases. By analyzing

these junk topics, we found that new topics related to events or disasters like
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Figure 4.6: Topical alignment for weekly AT topics for N ∈ [100, 600] topics(x-
axis) and α = 5/N and β = 0.25. The y-axis shows the fraction of a week’s
topic that have a single matching(resolved), multiple matching (repeated) to
previous week’s topics or are subsumed by one(fused) or multiple fused topics
of previous week(fused and repeated).

conferences, elections, flu trends, etc. could very well be predicted using our

technique and topics related to tv-shows that happen on a weekly basis was

harder to track.

Using weekly topical alignment both AT and ART models were able

to predict topics related to #mom2summit, #sxsw, superbowl, flu etc. There

were no topics related to #mom2summit in week 1 of February for these

models, however there were few mentions in week 2 and a lot more in week

3 which concurs with the fact that mom2summit conference took place on

February 19-21 which falls in the 3rd week. Similarly there were no topics

related to #sxsw in 1st and 2nd weeks of February but a lot more in the 3rd

week which again corresponds to #sxsw taking place in beginning of March

and is closer to week 3. At this point, we use the concept of missing topic
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Figure 4.7: Topical alignment for weekly ART topics for N ∈ [100, 600]
topics(x-axis) and α = 5/N and β = 0.25. The y-axis shows the fraction
of a week’s topic that have a single matching(resolved), multiple matching
(repeated) to previous week’s topics or are subsumed by one(fused) or multi-
ple fused topics of previous week(fused and repeated).

that is the likelihood that there are no matching topics when a previous week’s

topic is compared to all current week’s topics. “Superbowl” and “Gaza” are

examples of missing topics. Both these topics completely died in week 3 and

thus had no matching when comparing week 2 to week 3. This again concurs

with the fact Superbowl took place on February 1 in 2009 and Gaza was under

war for three weeks in January 2009. “Flu” is an example of a topic that was

repeated for all weeks of February for all models. Our findings and analysis

concur with the 2009 Twitter trends as well, Figure 4.8 2. Table 4.4 gives a

list of top 10 words that we could attribute to topics related to “Gaza” and

“mom2summit” respectively.

2Source: https://blog.twitter.com/2009/top-twitter-trends-of-2009
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AT ART
Week 2 Week 3 Week 2 Week 3
tipster mom2summit ixd09 mom2summit

whistleblower utah sunnies learn
feared alltop globetrotter agree

equipment taught exploratorium awesome
ucsd mozilla fusion stuff

pacers4got tabasco fortune things
investing shade imaging red
imaging scotch israel episodes

israel internet palestine microsoft
gaza market gaza ca

Table 4.4: Top 10 words from topics that were missing for week 2 and junk
for week 3 for AT and ART models respectively.

Figure 4.8: Twitter trends for 2009.
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4.1.4 Topic Model Analysis using Hashtags

In this section we would like to use the idea of topical alignment be-

tween hashtags and latent topics obtained from LDA, AT and ART topic

models. We vary the number of topics for each of the topic modelers between

100 to 600, N ∈ [100, 600] and α = 5/N , β = 0.25. The clustered dataset,

which contains at least 10 tweets for each hashtag, is used. This gave us alto-

gether 94 different hashtags and a total of 2820 tweets. The hashtag vector is

the unigram probability distribution for tweets containing that hashtag after

pre-processing and filtering on stop words. We then compute the similarity

between topic vectors obtained from each of LDA, AT, ART models and hash-

tag vectors. Topical alignment between topics vectors to hashtag vectors using

a threshold of 0.2 gives us interesting results, Figures 4.9, 4.10. We claim that

although only 11% [12] of tweets actually contain hashtags, the proportion of

the tweets that actually talk about topics related to hashtags is a lot more.

Our claims can be substantiated by the proportion of resolved topics in Fig-

ures 4.9, 4.10. The ratio of tweets that contain hashtags in our corpus is only

6%, this may be due to the fact that the idea of hashtags was first introduced

in 2009. The least proportion of the resolved topics is 18% and occurs for 400

LDA topics. Analyzing matches between topics and hashtags for this partic-

ular setting which we are least confident about proves our claim. This would

also mean that drawing inferences by relying on explicit presence of hashtags

would not be very useful, for example [6]. Top words for a topic that resolved

to #mom2summit were “houston, follow, friday, mom2summit, people, dcth,
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Figure 4.9: Topical alignment hashtag vectors for N ∈ [100, 600] (x-axis) and
α = 5/N and β = 0.25. The y-axis shows the fraction of latent topics that
have a single matching(resolved), multiple matching hashtags(repeated) or are
subsumed by one(fused) or multiple fused hashtags(fused and repeated).

single” and are very similar to the most probable unigrams in #mom2summit,

“single, mom, mom2summit, houston, friday”.

Another interesting result is that the highest percentage of resolved

topics for the LDA model is 23%, for AT is 41% and for ART is 26%, Figure

4.11. Thus we may be able to conclude that the topics obtained from AT

and ART models are clustered well with words occurring together in the same

cluster or topics and therefore resolve more to the hashtag vectors.
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Figure 4.10: Topical alignment hashtag vectors for N ∈ [100, 600] (x-axis) and
α = 5/N and β = 0.25. The y-axis shows the fraction of latent topics that
have a single matching(resolved), multiple matching hashtags(repeated) or are
subsumed by one(fused) or multiple fused hashtags(fused and repeated). The
LDA topical alignment on the right side is the same as in Figure 4.9 and is
repeated here for comparison with the ART model.

Figure 4.11: Percentage of resolved topics for AT and ART models, x-axis
represents N ∈ [100, 600].
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4.2 Discussion

In this section we discuss the inferences that were made from our anal-

ysis on microblogs. We first analyze how PMI as an evaluation metric can be

used to evaluate the performance of topic models on clustered and unclustered

tweets. Next we analyze how topical alignment helped us in discovering new

topics and inferences that could be made based on topic models used.

4.2.1 Using an Evaluation Metric

We presented the performance of the ART topic model for microblogs,

which addresses the issues of short text modeling. As expected, our exper-

imental results demonstrate that all three types of model perform better on

clustered documents than unclustered documents. Tweets belonging to one

cluster tend to represent more coherent topics as shown by [20]. Thus, models

trained on longer text yield better results than those trained on short text.

Our experiments demonstrate that, on average, for fewer than 300 top-

ics, the performance of the ART model is the best, followed by LDA, and

finally the AT model. The poor performance of AT model was a surprise but

it enabled us to make important inferences. Firstly we claim that an aver-

age Twitter user tweets about a wide range of topics and these topics have

a high distance when compared using a similarity metric, thus implying that

they have very little or no overlap. Secondly it it very difficult to distinguish

between any two average Twitter users; this inference follows from our first

claim. Our results provide evidence to these claims, as the performance of
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AT model keeps improving as we increase the number of topics. This means

that allowing more topics in the model gives room to cluster authors into more

topics and allows us to distinguish between their messages. Another point of

contention as discussed in [11] is that the the reason may be the “OR” nature

of the AT model: a message is either “generated” by the message or by an

author.

All our models’ performances improve with the number of topics. How-

ever, for 500 topics the performance is worse than those for < 500 topics. We

suspect this is mainly due to over-fitting. As we increase the number of topics,

we perform really well on some documents but for a new document the models

fail to estimate the parameters correctly and thus end up misclassifying. So

for our data, 300 is the optimal number of topics for topic modeling.

As shown in Section 4.1, increasing the number of iterations from 500

to 1000 has very little effect on the performance of the models. We also ran

our models for 2000 iterations and the results did not vary. Thus, we are

assured that all our models converge. Also we find that our models are robust

to different random initializations to the Gibbs chains.

4.2.2 Topic Discovery using Topical Alignment

It is hard to manually annotate microblogs and even harder to perform

large scale assessment of topical relevance. Thus the idea of using topical

alignment for discovering topics in microblogs was introduced. Visualizing

the correspondence matrix, figure 4.3 indicates that indeed there is some kind
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of correspondence between topic models and thus it is meaningful to draw

inferences based on such a topical alignment. As expected, many topics were

repeated when the AT or ART models were compared to LDA, figure 4.4.

The ratio of the number of fused and repeated topics for the ART model were

higher than the AT model which would mean that the ART model does a

better job of distributing unigrams to the topic they belong to as compared

to the AT model. Thus when an LDA topic is compared to ART topics, we

find multiple matches which meant that the LDA topic had subsumed those

matching ART topics.

At this point we would like to mention that the dynamic topic mod-

els(DTM) proposed by Blei and Lafferty do a similar analysis of evolution of

topic models over time. They assume that the order of documents in a corpus

is relevant, unlike the static topic models. They are able to compare the per-

formance of dynamic and static topic models in predicting topics over time.

We on the other hand used the static topic models and the idea of topical

alignment to achieve the same end. We haven’t evaluated the performance of

DTM on our corpus and we plan to look into it in order to compare it to our

system’s performance as part of future work.

We established a few things by using topical alignment for microblogs

and analyzing the results. Firstly it helped us in evaluating the performance

of AT and ART models on microblogs. Thus we can now say that although

LDA works reasonably well on microblogs, the quality of topics generated

by the AT and ART models are slightly better because they do a better job
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of classifying unigrams to topics. Secondly by computing similarity between

weekly tweets we were able to discover new topics and also infer things about

topics that are repeated from the previous week or died completely in the

current week. Our inferences were based on manually assessing the topics with

these characteristics. Finally comparing our topics to hashtag unigrams led

us to conclude that although many tweets do not explicitly contain hashtags,

the proportion of tweets that do actually talk about these hashtags is a lot

higher. Another thing to remember is that this assessment is based on 2009

data when hashtags were not used much.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main contributions to the thesis can be summarized as follows.

First we demonstrated the application of three types of graphical models, the

LDA, the AT and the ART to microblogs. Second we proposed the idea of

assessing relevance and topic model performance by measuring misalignments

between these models. Third we introduced the idea of topic discovery in

microblogs using topical alignment of time-series data. We also introduced

the idea of using junk and missing topics for detecting new topics or topics

that died out when comparing topics on a temporal basis. Finally these ideas

led us to make substantial inferences related to topic modeling in microblogs.

The idea of topical alignment is not new and has been proposed by

Chuang et al. in [7]. They used human experts to build a set of reference con-

cepts in the domain of Information Visualization and matched the outcome of

various topic models under different settings, to these concepts. They visualize

the results they obtain and analyze them in their paper. Although we borrow

the idea of topical alignment, we modify it that lead to several unique contri-

butions to this thesis with respect to topic diagnostics. We have no human

51



intervention and match one topic model against another. We proved that this

is meaningful thing to do. We apply the idea to microblogs which have a very

different language model compared to larger documents belonging to the same

domain. We propose the idea of temporal analysis by matching a model on

tweets of different times and thus perform topic detection using topical align-

ment. Lastly we also match topic models outcomes to hashtag vectors which

has never been done before. This allows us to strengthen claims on structure

of microblogs.

Further we addressed the issue of topic modeling in a microblogging

environment. More specifically, through our experiments we showed that for

short and unstructured text, it is more meaningful to cluster the documents

before modeling them, leading to superior performance. Our results show that

discovering topics by conditioning on the author-recipient relationships in a

corpus of tweets works best. In this thesis, we conducted extensive quanti-

tative experiments on the three models. We compared the models based on

a number of aspects including how the topics learned by these models differ

quantitatively.

We believe that topical alignment would give a new direction to the

research on topic discovery in microblogs and that its applications are not

limited to large scale assessment of topical relevance for which it was originally

introduced. We also believe that although it is good to have a manually

annotated set of concepts, it is not imperative to have it for performing topical

relevance. Misalignments between topics also help in substantiating claims

52



that were previously established on characteristics of microblogs. We believe

that our research would lay the groundwork for future work in story or event

detection in microblogs by implementing topical alignment and its various

flavors.

5.2 Future Work

As part of our future work we plan to conduct a more thorough study

on evaluation of using topical alignment in microblogs on a temporal basis.

We would like to experiment with daily and even hourly tweets to verify ro-

bustness of our system. We would also like to conduct experiments in real

time. In addition we would like to compare the performance of Dynamic

Topic Models(DTM) and our system for topic quality, scalability and also effi-

ciency. Finally we would like to explore the idea of topical alignment for more

applications to microblogs.
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