26,241,172 research outputs found
A Parameterized Algebra for Event Notification Services
Event notification services are used in various applications such as digital libraries, stock tickers, traffic control, or facility management. However, to our knowledge, a common semantics of events in event notification services has not been defined so far. In this paper, we propose a parameterized event algebra which describes the semantics of composite events for event notification systems. The parameters serve as a basis for flexible handling of duplicates in both primitive and composite events
Complexity of ITL model checking: some well-behaved fragments of the interval logic HS
Model checking has been successfully used in many computer science fields,
including artificial intelligence, theoretical computer science, and databases.
Most of the proposed solutions make use of classical, point-based temporal
logics, while little work has been done in the interval temporal logic setting.
Recently, a non-elementary model checking algorithm for Halpern and Shoham's
modal logic of time intervals HS over finite Kripke structures (under the
homogeneity assumption) and an EXPSPACE model checking procedure for two
meaningful fragments of it have been proposed. In this paper, we show that more
efficient model checking procedures can be developed for some expressive enough
fragments of HS
LTL Fragments are Hard for Standard Parameterisations
We classify the complexity of the LTL satisfiability and model checking
problems for several standard parameterisations. The investigated parameters
are temporal depth, number of propositional variables and formula treewidth,
resp., pathwidth. We show that all operator fragments of LTL under the
investigated parameterisations are intractable in the sense of parameterised
complexity.Comment: TIME 2015 conference versio
Bounded Reachability for Temporal Logic over Constraint Systems
We present CLTLB(D), an extension of PLTLB (PLTL with both past and future
operators) augmented with atomic formulae built over a constraint system D.
Even for decidable constraint systems, satisfiability and Model Checking
problem of such logic can be undecidable. We introduce suitable restrictions
and assumptions that are shown to make the satisfiability problem for the
extended logic decidable. Moreover for a large class of constraint systems we
propose an encoding that realize an effective decision procedure for the
Bounded Reachability problem
Partially Punctual Metric Temporal Logic is Decidable
Metric Temporal Logic \mathsf{MTL}[\until_I,\since_I] is one of the most
studied real time logics. It exhibits considerable diversity in expressiveness
and decidability properties based on the permitted set of modalities and the
nature of time interval constraints . Henzinger et al., in their seminal
paper showed that the non-punctual fragment of called
is decidable. In this paper, we sharpen this decidability
result by showing that the partially punctual fragment of
(denoted ) is decidable over strictly monotonic finite point
wise time. In this fragment, we allow either punctual future modalities, or
punctual past modalities, but never both together. We give two satisfiability
preserving reductions from to the decidable logic
\mathsf{MTL}[\until_I]. The first reduction uses simple projections, while
the second reduction uses a novel technique of temporal projections with
oversampling. We study the trade-off between the two reductions: while the
second reduction allows the introduction of extra action points in the
underlying model, the equisatisfiable \mathsf{MTL}[\until_I] formula obtained
is exponentially succinct than the one obtained via the first reduction, where
no oversampling of the underlying model is needed. We also show that
is strictly more expressive than the fragments
\mathsf{MTL}[\until_I,\since] and \mathsf{MTL}[\until,\since_I]
Distributional Energy-Momentum Densities of Schwarzschild Space-Time
For Schwarzschild space-time, distributional expressions of energy-momentum
densities and of scalar concomitants of the curvature tensors are examined for
a class of coordinate systems which includes those of the Schwarzschild and of
Kerr-Schild types as special cases. The energy-momentum density of the gravitational source and the gravitational
energy-momentum pseudo-tensor density have the expressions
and
, respectively. In expressions of the curvature squares
for this class of coordinate systems, there are terms like
and [\delta^{(3)}(x)}]^2, as well as other terms, which
are singular at . It is pointed out that the well-known expression
is not correct, if we define .}Comment: 21 pages, LaTeX, uses amssymb.sty. To appear in Prog. Theor. Phys. 98
(1997
On Relaxing Metric Information in Linear Temporal Logic
Metric LTL formulas rely on the next operator to encode time distances,
whereas qualitative LTL formulas use only the until operator. This paper shows
how to transform any metric LTL formula M into a qualitative formula Q, such
that Q is satisfiable if and only if M is satisfiable over words with
variability bounded with respect to the largest distances used in M (i.e.,
occurrences of next), but the size of Q is independent of such distances.
Besides the theoretical interest, this result can help simplify the
verification of systems with time-granularity heterogeneity, where large
distances are required to express the coarse-grain dynamics in terms of
fine-grain time units.Comment: Minor change
Dynamic Consistency of Conditional Simple Temporal Networks via Mean Payoff Games: a Singly-Exponential Time DC-Checking
Conditional Simple Temporal Network (CSTN) is a constraint-based
graph-formalism for conditional temporal planning. It offers a more flexible
formalism than the equivalent CSTP model of Tsamardinos, Vidal and Pollack,
from which it was derived mainly as a sound formalization. Three notions of
consistency arise for CSTNs and CSTPs: weak, strong, and dynamic. Dynamic
consistency is the most interesting notion, but it is also the most challenging
and it was conjectured to be hard to assess. Tsamardinos, Vidal and Pollack
gave a doubly-exponential time algorithm for deciding whether a CSTN is
dynamically-consistent and to produce, in the positive case, a dynamic
execution strategy of exponential size. In the present work we offer a proof
that deciding whether a CSTN is dynamically-consistent is coNP-hard and provide
the first singly-exponential time algorithm for this problem, also producing a
dynamic execution strategy whenever the input CSTN is dynamically-consistent.
The algorithm is based on a novel connection with Mean Payoff Games, a family
of two-player combinatorial games on graphs well known for having applications
in model-checking and formal verification. The presentation of such connection
is mediated by the Hyper Temporal Network model, a tractable generalization of
Simple Temporal Networks whose consistency checking is equivalent to
determining Mean Payoff Games. In order to analyze the algorithm we introduce a
refined notion of dynamic-consistency, named \epsilon-dynamic-consistency, and
present a sharp lower bounding analysis on the critical value of the reaction
time \hat{\varepsilon} where the CSTN transits from being, to not being,
dynamically-consistent. The proof technique introduced in this analysis of
\hat{\varepsilon} is applicable more in general when dealing with linear
difference constraints which include strict inequalities
- …
