
A Parameterized Algebra for Event Notification Services

Annika Hinze, Agnès Voisard
Freie Universität Berlin

fhinze, voisard@inf.fu-berlin.deg

Abstract

Event notification services are used in various applica-
tions such as digital libraries, stock tickers, traffic control,
or facility management. However, to our knowledge, a com-
mon semantics of events in event notification services has
not been defined so far. In this paper, we propose a pa-
rameterized event algebra which describes the semantics of
composite events for event notification systems. The param-
eters serve as a basis for flexible handling of duplicates in
both primitive and composite events.

1. Introduction

An event notification service informs its users about new
events that occurred on providers’ sites. User interests are
defined by means of profiles, which may consist of queries
regarding primitive events, their time and order of occur-
rence, and of composite events, which are formed by tem-
poral combinations of events. Profiles are defined using a
Profile Definition Language for Alerting (PDLA). An ex-
ample profile in a logistics application is Notify if a sensor
reads temperature above 30ÆC three times within a given
timespan. The events entering an event notification system
are filtered according to user profiles.

In this paper, we use an event algebra to describe the
events that are filtered by an ENS and that can be subscribed
to via profiles. In addition to the fact that only few sophis-
ticated profile languages are defined, the evaluation of lan-
guages that seem to follow similar semantics does not al-
ways lead to similar results. One example is the handling of
duplicate events: depending on the implementation, in the
filtering process, duplicates are either skipped or kept.

In the area of active database systems, the problem of
event rule specification has been evaluated with focus on
composite events, e.g., [2, 4]. Some ENS systems also
implement composite events, e.g. [5, 6, 9]. The seman-
tics of composite events in active databases and existing
application-specific ENS are not sufficient for integrating
applications: The implemented algebras do not cover all

necessary event combinations, in particular combinations of
subsequent duplicate groups as used in logistics support and
facility management. The systems also lack the necessary
flexibility in the event processing to support event providers
with slightly different semantics.

Semantics of operators for composite events are not de-
fined in a uniform manner in the numerous application ar-
eas. Our approach, therefore, supports various perceptions.
This is achieved through the introduction of a flexible se-
mantics which is controlled by a set of parameters.

This paper is organized as follows. Section 2 points out
the differences of our approach to active databases and other
related work. In Section 3 introduces our parameterized
event algebra. Finally, Section 4 addresses concluding re-
marks and gives some directions for future work in this do-
main.

2. Concepts

An event is the occurrence of a state transition at a cer-
tain point in time. Each event has a timestamp reflecting
its occurrence time. Timestamps are defined within a time
system based on an internal clock. For the sake of sim-
plicity, we assume that all occurring events can be ordered
sequentially in a global system of reference. The system of
reference for the time is discrete.

We consider primitive events and composite events,
which are formed by combining primitive and composite
events. We further distinguish two types of primitive events:
time events and content events. Time events describe the
occurrence of a certain point in time. Content events in-
volve changes of non-temporal objects. We do not discuss
the definition of primitive events in greater detail. One
approach is the definition by (attribute,value) pairs, e.g.,
e1 = event(sensor = xyz; temperature = 35ÆC).

We distinguish events from event classes. An event class
is defined by a set of event properties. Even though events
of the same event class share these properties, they may
differ in other event attributes. User profiles define event
classes, e.g., p1 = profile(temperature > 30ÆC).

Events are denoted by lower Latin e, while event classes

Proceedings of the Ninth International Symposium on Temporal Representation and Reasoning (TIME’02)
1530-1311/02 $17.00 © 2002 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are denoted by upper Latin E. The fact that an event e i
corresponds to an instance of an event class Ej is ei 2 Ej .
The timestamp of an event e is denoted t(e).1 Based upon a
notation used, e.g,. in [1], the matching operator is defined
as follows:

Definition 1 (Profile Matching @) Consider the event e

and a given profile p. It is said that e matches p, denoted
p @ e, if all properties of the profile and the event match.

The exemplary event e1 matches the profile p12.

3. Event Algebra

This section describes our event algebra. First, we infor-
mally describe the event operators. The events e1 and e2
in the descriptions below can be any primitive or compos-
ite event, t() refers to occurrence times, and t denotes time
spans.
– The disjunction (e1je2) of events occurs if either e1 or e2,
t(e1je2) := minft(e1); t(e2)g.
– The conjunction (e1; e2)t occurs when both e1 and e2
have occurred within a time span t3, regardless of the or-
der, t(e1; e2) := maxft(e1); t(e2)g.
– The sequence (e1; e2)t occurs when e1 occurs before e2
with t(e2) � t(e1) + t, t(e1; e2) := t(e2).
– The negation et defines a negative event; e does not oc-
cur for an interval [tstart; tend], tend = tstart + t of time,
t(et) := tend(et).
– The selection e[i] defines the occurrence of the ith event
of a list of events, i 2 N.

Let us assume a profile p = (e1; e2)t and the follow-
ing history (trace) of events: tr = fe1; e1; e2; e2g. It is
not automatically clear which pair of events fulfills our pro-
file. Candidate pairs are the inner two events, or the first
and the third. It is also not clear wether the profile can be
matched twice, e.g., by pairs (2,3) and (1,4), or by (1,3)
and (2,4). For different applications, different event-history
evaluations could be applied. As parameters we adopt the
modes of event instance selection and consumption from
active databases [10]. Event instance selection describes,
which events qualify for the complex events, and how du-
plicated events are handled. Event instance consumption
defines which events are consumed by complex events. In
contrast to active databases, event selection and consump-
tion in ENS cannot be handled independently.

Duplicate events are event instances that belong to the
same class. We introduce the notion of a duplicate set:

1The time of events that do not occur is set to1.
2Evaluations start after the profile definition and for each positively

evaluated event p @ e holds implicitly t(e) > t(p).
3(e1; e2)1 refers to an event composition no matter the time of the

composing events. It is equivalent to the original conjunction constructor
as defined, e.g., in [3].

Definition 2 (duplicate set) Let e1, e2 be two events with
e1 6= e2. We then define a duplicate set as the ordered set
of events of type e1 that occur in a sequence without any
events of type e2 in between, e2 without e1 respectively.

For the instance selection parameter we distinguish the se-
lection of the first/last event of each duplicate set or the con-
sideration of all events. For the identification of compos-
ite events the following holds: Matched events can be con-
sumed by the composite event or they can contribute several
times to composite events of the same class. If events are
consumed by composite events, the filtering process could
be reapplied after unique composite events have been iden-
tified. We now introduce the terminology for our formal
event algebra.

Definition 3 (event space) The set of all possible events
known to a system is called the event space E . The set of
all time events is denoted E t .

Definition 4 (trace) A trace trt1;t2 is a sequence of or-
dered events e 2 E with defined start- and end-points t1,
t2 respectively.

The history of events that a service processes is then trt0;1
with t0 being the point in time the service started observing
events. As a trace behaves essentially as a list, we can use
the operations commonly defined for lists. For each list we
apply an arbitrary local order that assigns an index-number
i 2 N to each event. The elements of a list L can then be
accessed by their index-number, and L[i].

Definition 5 (trace view) Let E1 be a class of events. The
subset tr(E1) of a given trace tr is defined as the list of
continuously ordered events that contains only events e 2
E1. We call this subset a trace view.

The trace view tr(E1; E2) contains all e1 2 E1; e2 2 E2

with e1 2 tr and e2 2 tr. We also use the shorthand no-
tation tr(e1; e2). Note that the events in tr(E1) keep all
their attributes including occurrence time, but obtain a new
index-number. We now define a re-numbering on the list tr:

Trace Renumbering The list is subdivided into disjunct
sublists tr[1]; : : : ; tr[n] each containing successive events
of identical types. Every element of such a sublist is de-
noted with tr[x; y], where x 2 N is the number of the sub-
list and y 2 [1; length(tr[x])] is the index-number of the
element within the sublist.

The length of a sublist is defined as the number of list el-
ements. Disjunctive sublists containing only similar events
are referred to as duplicate lists. Note that we denote (un-
ordered) sets of events with E or Et while tr[] denotes or-
dered sets or lists of events. Without loss of generality, we
assume tr(e1; e2) to start with tr[1; 1] = e1. The follow-
ing definition holds for all w 2 [wmin; wmax], x 2 [1;1),

Proceedings of the Ninth International Symposium on Temporal Representation and Reasoning (TIME’02)
1530-1311/02 $17.00 © 2002 IEEE

y 2 [1;1), and z 2 [zmin; zmax]. The parameters Pxy,
wmin, wmax, zmin, zmax substantially influence the oper-
ator semantics. Due to space restrictions we only show the
formal definition an event sequence, full definition od all
operators can be found in [8].

Definition 6 (sequence of events) If two events e1; e2 2 E

form a sequence the following condition holds for a given
time span t 2 R: (p1; p2)t @ (e1; e2)) fp1 @ e1; p2 @

e2; t(e2) 2 (t(e1); t(e1)+1]g The set of matching events of
a given trace tr is then defined as

(p1;p2)t(tr) @ f(tr[2x� 1; z]; tr[2y; w])j tr[2x� 1; z];

tr[2y; w] 2 tr(e1; e2); (p1; p2)t @ (tr[2x� 1; z];

tr[2y; w]);8x;8y;8w;8z ^ Pxyg

Semantical Variations We now evaluate different ap-
proaches for the parameter values, which implement differ-
ent semantics of the operators. For consumption modes we
distinguish the selection of unique pairs Pxy : x = y and
the selection of all pairs: Pxy : x � y.

For the event instance selection, we distinguish several
variations to select events from duplicate lists. Each has to
be evaluated depending on the position of the event relative
to the binary operator. We use the notation anterior and
posterior to refer to the two operators, trant and trpost de-
note the respective duplicate lists. We make the distinction
between the selection of the first/last event, or of all of them.

anterior posterior
first zmin = zmax = 1 wmin = wmax = 1

last zmin = length(trant) wmin = wmax = m

zmax = length(trant)

all zmin = 1 wmin = 1

zmax = length(trant) wmax = m

with m 2 N : 8j > m : t(trpost[:; j]) > t(trpost[:; :]) + t,
where the dots are placeholders for the respective values, t 2 R as
defined for the operator.

The different cases can be combined, taking as posterior
event every first in a duplicate set and as anterior event the
respective last duplicate match.

The third approach is a combination of the already intro-
duced dimensions. We consider unique pairs only, but reap-
ply the filter until all matches are found. The first matches
are, e.g., first/last events of duplicate sets, the second match
are second/next-to-last events, and so forth. Other combi-
nations are plausible. We only show two intuitive examples.

Pxy: x = y

first zmin = 1

zmax = min(length(trant); length(trpost))

wmin = 1

wmax = min(length(trant); length(trpost))

last zmin = length(trant)

zmax = length(trant)�min(m; length(trant))

wmin = m

wmax = m�min(m; length(trant))

The issue of order and time in a distributed environment
is crucial and has to be considered for an implementation
of this operators. We distinguish event evaluation at the
end of the defined time span vs continuous evaluation of
events. The latter one offers the advantage of early noti-
fication. Here, fast but probably incorrect information is
delivered in opposition to correct but later information after
the ending of the time frame.

This approach is appropriate in several applications, e.g.,
catastrophe warning systems for environmental surround-
ings or other systems for urgent information delivery (for
an analysis of information correctness see [7]).

4. Conclusion & Outlook

We proposed a parameterized event algebra for integrat-
ing event notification services that support differently struc-
tured event sources. We introduced our event algebra in
both an informal and a formal way. Note that the formalism
used here is similar to the one of the relational algebra. The
relational algebra lacks the concept of ordering, therefore
we introduced an ordering relation on event traces.

We are currently implementing a prototype of a generic
parameterized Event Notification System (GENAS) that is
based on the parameterized event algebra introduced here.
GENAS can be adapted to different application fields using
various parameter settings.

References

[1] A. Carzaniga, D. Rosenblum, and A. Wolf. Achieving
scalability and expressiveness in an internet-scale event
notification service. In PODS, 2000.

[2] S. Chakravarthy and D. Mishra. Snoop: An Expressive
Event Specification Language for Active Databases.
Knowledge & Data Engineering Jour., 14:1–26, 1994.

[3] S. Gatziu and K. Dittrich. Events in an active
object-oriented database system. In Int. Workshop on Rules
in Database Systems., 1993.

[4] S. Gatziu and K. Dittrich. Detecting Composite Events in
Active DB Systems Using Petri Nets. In RIDE-ADS, 1994.

[5] A. Geppert and D. Tombros. Event-based distributed
workflow execution with EVE. Technical Report ifi-96.05,
University of Zurich, 1996.

[6] R. Gruber, B. Krishnamurthy, and E. Panagos. The
architecture of the READY event notification service. In
ICDCS workshop, Austin, Texas, 1999.

[7] A. Hinze. How does the observation strategy influence the
correctness of alerting services? In Proc. of the BTW
(German National Conf. on Databases), 2001.

[8] A. Hinze and A. Voisard. A flexible parameter-dependent
algebra for event notification services. Technical Report
Number tr-b-02-10, Freie Universität Berlin, 2002.

[9] C. Liebig, M. Cilia, and A. Buchmann. Event Composition
in Time-dependent Distributed Systems. In CoopIS, 1999.

[10] D. Zimmer and R. Unland. On the semantics of complex
events inactive database management systems. In Proc. of
the ICDE, 1999.

Proceedings of the Ninth International Symposium on Temporal Representation and Reasoning (TIME’02)
1530-1311/02 $17.00 © 2002 IEEE

