151 research outputs found

    Thermal phase shifters for femtosecond laser written photonic integrated circuits

    Get PDF
    Photonic integrated circuits (PICs) are today acknowledged as an effective solution to fulfill the demanding requirements of many practical applications in both classical and quantum optics. Phase shifters integrated in the photonic circuit offer the possibility to dynamically reconfigure its properties in order to fine tune its operation or to produce adaptive circuits, thus greatly extending the quality and the applicability of these devices. In this paper, we provide a thorough discussion of the main problems that one can encounter when using thermal shifters to reconfigure photonic circuits. We then show how all these issues can be solved by a careful design of the thermal shifters and by choosing the most appropriate way to drive them. Such performance improvement is demonstrated by manufacturing thermal phase shifters in femtosecond laser written PICs (FLW-PICs), and by characterizing their operation in detail. The unprecedented results in terms of power dissipation, miniaturization and stability, enable the scalable implementation of reconfigurable FLW-PICs that can be easily calibrated and exploited in the applications

    Integrated optical device for Structured Illumination Microscopy

    Get PDF
    Structured Illumination Microscopy (SIM) is a key technology for high resolution and super-resolution imaging of biological cells and molecules. The spread of portable and easy-to-align SIM systems requires the development of novel methods to generate a light pattern and to shift it across the field of view of the microscope. Here we show a miniaturized chip that incorporates optical waveguides, splitters, and phase shifters, to generate a 2D structured illumination pattern suitable for SIM microscopy. The chip creates three point-sources, coherent and controlled in phase, without the need for further alignment. Placed in the pupil of a microscope's objective, the three sources generate a hexagonal illumination pattern on the sample, which is spatially translated thanks to thermal phase shifters. We validate and use the chip, upgrading a commercial inverted fluorescence microscope to a SIM setup and we image biological sample slides, extending the resolution of the microscope. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen

    Photonic Integrated Reconfigurable Linear Processors as Neural Network Accelerators

    Get PDF
    Reconfigurable linear optical processors can be used to perform linear transformations and are instrumental in effectively computing matrix-vector multiplications required in each neural network layer. In this paper, we characterize and compare two thermally tuned photonic integrated processors realized in silicon-on-insulator and silicon nitride platforms suited for extracting feature maps in convolutional neural networks. The reduction in bit resolution when crossing the processor is mainly due to optical losses, in the range 2.3-3.3 for the silicon-on-insulator chip and in the range 1.3-2.4 for the silicon nitride chip. However, the lower extinction ratio of Mach-Zehnder elements in the latter platform limits their expressivity (i.e., the capacity to implement any transformation) to 75%, compared to 97% of the former. Finally, the silicon-on-insulator processor outperforms the silicon nitride one in terms of footprint and energy efficiency

    Photonic integrated reconfigurable linear processors as neural network accelerators

    Get PDF
    Reconfigurable linear optical processors can be used to perform linear transformations and are instrumental in effectively computing matrix–vector multiplications required in each neural network layer. In this paper, we characterize and compare two thermally tuned photonic integrated processors realized in silicon-on-insulator and silicon nitride platforms suited for extracting feature maps in convolutional neural networks. The reduction in bit resolution when crossing the processor is mainly due to optical losses, in the range 2.3–3.3 for the silicon-on-insulator chip and in the range 1.3–2.4 for the silicon nitride chip. However, the lower extinction ratio of Mach–Zehnder elements in the latter platform limits their expressivity (i.e., the capacity to implement any transformation) to 75%, compared to 97% of the former. Finally, the silicon-on-insulator processor outperforms the silicon nitride one in terms of footprint and energy efficiency

    3D-printed facet-attached optical elements for beam shaping in optical phased arrays

    Get PDF
    We demonstrate an optical phased-array equipped with a 3D-printed facet-attached element for shaping and deflection of the emitted beam. The beam shaper combines freeform refractive surfaces with total-internal-reflection mirrors and is in-situ printed to edge-emitting waveguide facets using high-resolution multi-photon lithography, thereby ensuring precise alignment with respect to on-chip waveguide structures. In a proof-of-concept experiment, we achieve a grating-lobe free steering range of ±\pm30∘^{\circ} and a full-width-half-maximum beam divergence of approximately 2∘^{\circ}. The concept opens an attractive alternative to currently used grating structures and is applicable to a wide range of integration platforms

    Fast path and polarisation manipulation of telecom wavelength single photons in lithium niobate waveguide devices

    Get PDF
    We demonstrate fast polarisation and path control of photons at 1550 nm in lithium niobate waveguide devices using the electro-optic effect. We show heralded single photon state engineering, quantum interference, fast state preparation of two entangled photons and feedback control of quantum interference. These results point the way to a single platform that will enable the integration of nonlinear single photon sources and fast reconfigurable circuits for future photonic quantum information science and technology.Comment: 6 page

    3D-printed facet-attached optical elements for beam shaping in optical phased arrays

    Get PDF
    We demonstrate an optical phased-array equipped with a 3D-printed facet-attached element for shaping and deflection of the emitted beam. The beam shaper combines freeform refractive surfaces with total-internal-reflection mirrors and is in-situ printed to edge-emitting waveguide facets using high-resolution multi-photon lithography, thereby ensuring precise alignment with respect to on-chip waveguide structures. In a proof-of-concept experiment, we achieve a grating-lobe free steering range of ±\pm30∘^{\circ} and a full-width-half-maximum beam divergence of approximately 2∘^{\circ}. The concept opens an attractive alternative to currently used grating structures and is applicable to a wide range of integration platforms

    High-fidelity and polarization insensitive universal photonic processors fabricated by femtosecond laser writing

    Full text link
    Universal photonic processors (UPPs) are fully programmable photonic integrated circuits that are key components in quantum photonics. With this work, we present a novel platform for the realization of low-loss, low-power and high-fidelity UPPs based on femtosecond laser writing (FLW) and compatible with a large wavelength spectrum. In fact, we demonstrate different UPPs, tailored for operation at 785 nm and 1550 nm, providing similar high-level performances. Moreover, we show that standard calibration techniques applied to FLW-UPPs result in Haar random polarization independent photonic transformations implemented with average amplitude fidelity as high as 0.9979 at 785 nm (0.9970 at 1550 nm), with the possibility of increasing the fidelity over 0.9990 thanks to novel optimization algorithms. Besides being the first demonstrations of polarization-transparent UPPs, these devices show the highest level of control and reconfigurability ever reported for a FLW circuit. These qualities will be greatly beneficial to applications in quantum information processing

    Quantum teleportation on a photonic chip

    Full text link
    Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementations have largely focussed on achieving long distance teleportation due to its suitability for decoherence-free communication. Teleportation also plays a vital role in the scalability of photonic quantum computing, for which large linear optical networks will likely require an integrated architecture. Here we report the first demonstration of quantum teleportation in which all key parts - entanglement preparation, Bell-state analysis and quantum state tomography - are performed on a reconfigurable integrated photonic chip. We also show that a novel element-wise characterisation method is critical to mitigate component errors, a key technique which will become increasingly important as integrated circuits reach higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted manuscript; Nature Photonics (2014
    • …
    corecore