317,019 research outputs found

    Temporal and causal reasoning in deaf and hearing novice readers

    Get PDF
    Temporal and causal information in text are crucial in helping the reader form a coherent representation of a narrative. Deaf novice readers are generally poor at processing linguistic markers of causal/temporal information (i.e., connectives), but what is unclear is whether this is indicative of a more general deficit in reasoning about temporal/causal information. In Study 1, 10 deaf and 63 hearing children, matched for comprehension ability and age, were compared on a range of tasks tapping temporal/causal reasoning skills. In Study 2, 20 deaf and 32 hearing children, matched for age but not reading comprehension ability, were compared on revised versions of the tasks. The pattern of performance of the deaf was different from that of the hearing; they had difficulties when temporal and causal reasoning was text-based, but not when it was nonverbal, indicating that their global temporal/causal reasoning skills are comparable with those of their hearing counterparts

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Temporal Landscapes: A Graphical Temporal Logic for Reasoning

    Full text link
    We present an elementary introduction to a new logic for reasoning about behaviors that occur over time. This logic is based on temporal type theory. The syntax of the logic is similar to the usual first-order logic; what differs is the notion of truth value. Instead of reasoning about whether formulas are true or false, our logic reasons about temporal landscapes. A temporal landscape may be thought of as representing the set of durations over which a statement is true. To help understand the practical implications of this approach, we give a wide variety of examples where this logic is used to reason about autonomous systems.Comment: 20 pages, lots of figure

    Stream Reasoning in Temporal Datalog

    Full text link
    In recent years, there has been an increasing interest in extending traditional stream processing engines with logical, rule-based, reasoning capabilities. This poses significant theoretical and practical challenges since rules can derive new information and propagate it both towards past and future time points; as a result, streamed query answers can depend on data that has not yet been received, as well as on data that arrived far in the past. Stream reasoning algorithms, however, must be able to stream out query answers as soon as possible, and can only keep a limited number of previous input facts in memory. In this paper, we propose novel reasoning problems to deal with these challenges, and study their computational properties on Datalog extended with a temporal sort and the successor function (a core rule-based language for stream reasoning applications)

    Temporal Relational Reasoning in Videos

    Full text link
    Temporal relational reasoning, the ability to link meaningful transformations of objects or entities over time, is a fundamental property of intelligent species. In this paper, we introduce an effective and interpretable network module, the Temporal Relation Network (TRN), designed to learn and reason about temporal dependencies between video frames at multiple time scales. We evaluate TRN-equipped networks on activity recognition tasks using three recent video datasets - Something-Something, Jester, and Charades - which fundamentally depend on temporal relational reasoning. Our results demonstrate that the proposed TRN gives convolutional neural networks a remarkable capacity to discover temporal relations in videos. Through only sparsely sampled video frames, TRN-equipped networks can accurately predict human-object interactions in the Something-Something dataset and identify various human gestures on the Jester dataset with very competitive performance. TRN-equipped networks also outperform two-stream networks and 3D convolution networks in recognizing daily activities in the Charades dataset. Further analyses show that the models learn intuitive and interpretable visual common sense knowledge in videos.Comment: camera-ready version for ECCV'1
    • ā€¦
    corecore