2,720,821 research outputs found
Anisotropic Unruh temperatures
The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin
Temperatures of Exploding Nuclei
Breakup temperatures in central collisions of 197Au + 197Au at bombarding
energies E/A = 50 to 200 MeV were determined with two methods. Isotope
temperatures, deduced from double ratios of hydrogen, helium, and lithium
isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12
MeV, in qualitative agreement with a scenario of chemical freeze-out after
adiabatic expansion. Excited-state temperatures, derived from yield ratios of
states in 4He, 5Li, 6Li, and 8Be, are about 5 MeV, independent of the
projectile energy, and seem to reflect the internal temperature of fragments at
their final separation from the system.
PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 10 pages, RevTeX with 4 included figures; Also available from
http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
Antiferromagnets at low Temperatures
The low-temperature properties of the Heisenberg antiferromagnet in 2+1
space-time dimensions are analyzed within the framework of effective
Lagrangians. It is shown that the magnon-magnon interaction is very weak and
repulsive, manifesting itself through a term proportional to five powers of the
temperature in the pressure. The structure of the low-temperature series for
antiferromagnets in 2+1 dimensions is compared with the structure of the
analogous series for antiferromagnets in 3+1 dimensions. The model-independent
and systematic effective field theory approach clearly proves to be superior to
conventional condensed matter methods such as spin-wave theory.Comment: Presented at 12th Mexican Workshop on Particles and Fields, Mazatlan,
Sinaloa, Mexico, 9-14 Nov 200
Baryogenesis at Low Reheating Temperatures
We note that the maximum temperature during reheating can be much greater
than the reheating temperature at which the Universe becomes radiation
dominated. We show that the Standard Model anomalous -violating
processes can therefore be in thermal equilibrium for 1 GeV \simlt T_{r}\ll
100 GeV. Electroweak baryogenesis could work and the traditional upper bound
on the Higgs mass coming from the requirement of the preservation of the baryon
asymmetry may be relaxed. Alternatively, the baryon asymmetry may be
reprocessed by sphaleron transitions either from a asymmetry generated
by the Affleck-Dine mechanism or from a chiral asymmetry between and
in a Universe. Our findings are also relevant to the production
of the baryon asymmetry in large extra dimension models.Comment: 4 pages, version to appear in PRL: references added, new titl
Quantum Decoherence at Finite Temperatures
We study measures of decoherence and thermalization of a quantum system
in the presence of a quantum environment (bath) . The whole system is
prepared in a canonical thermal state at a finite temperature. Applying
perturbation theory with respect to the system-environment coupling strength,
we find that under common Hamiltonian symmetries, up to first order in the
coupling strength it is sufficient to consider the uncoupled system to predict
decoherence and thermalization measures of . This decoupling allows closed
form expressions for perturbative expansions for the measures of decoherence
and thermalization in terms of the free energies of and of . Numerical
results for both coupled and decoupled systems with up to 40 quantum spins
validate these findings.Comment: 5 pages, 3 figure
Retrieving Temperatures and Abundances of Exoplanet Atmospheres with High-Resolution Cross-Correlation Spectroscopy
Hi-resolution spectroscopy (R > 25,000) has recently emerged as one of the
leading methods to detect atomic and molecular species in the atmospheres of
exoplanets. However, it has so far been lacking in a robust method to extract
quantitative constraints on temperature structure and molecular/atomic
abundances. In this work we present a novel Bayesian atmospheric retrieval
framework applicable to high resolution cross-correlation spectroscopy (HRCCS)
that relies upon the cross-correlation between data and models to extract the
planetary spectral signal. We successfully test the framework on simulated data
and show that it can correctly determine Bayesian credibility intervals on
atmospheric temperatures and abundances allowing for a quantitative exploration
of the inherent degeneracies. Furthermore, our new framework permits us to
trivially combine and explore the synergies between HRCCS and low-resolution
spectroscopy (LRS) to provide maximal leverage on the information contained
within each. This framework also allows us to quantitatively assess the impact
of molecular line opacities at high resolution. We apply the framework to VLT
CRIRES K-band spectra of HD 209458 b and HD 189733 b and retrieve abundant
carbon monoxide but sub-solar abundances for water, largely invariant under
different model assumptions. This confirms previous analysis of these datasets,
but is possibly at odds with detections of water at different wavelengths and
spectral resolutions. The framework presented here is the first step towards a
true synergy between space observatories and ground-based hi-resolution
observations.Comment: Accepted Version (01/16/19
- …
