24,363 research outputs found

    Scaling from single-point sap velocity measurements to stand transpiration in a multi-species deciduous forest: uncertainty sources, stand structure effect, and future scenarios impacts

    Get PDF
    ABSTRACT A major challenge in studies estimating stand water use in mixed-species forests is how to effectively scale data from individual trees to the stand. This is the case for forest ecosystems in the northeastern USA where differences in water use among species and across different size classes have not been extensively studied, despite their relevance for a wide range of ecosystem services. Our objectives were to assess the importance of different sources of variability ontranspiration upscaling and explore the potential impacts of future shifts in species composition on forest water budget. We measured sap velocity in five tree species (Fagus grandiflora, Acer rubrum, A. saccharum, Betula alleghaniensis, B. papyrifera) in a mature and young stand in NH (USA). Our results showed that the greatest potential source of error was radial variability and that tree size was more important than species in determining sap velocity. Total sapwood area was demonstrated to exert a strong controlling influence on transpiration, varying depending on tree size and species. We conclude that the effect of potential species shifts on transpirationwill depend on the sap velocity, determined mainly by radial variation and tree size, but also on the sapwood area distribution in the stand

    MODERATE SEVERITY DISTURBANCE HAS SIMILAR EFFECTS ON THE PRODUCTION OF THREE FORESTS NESTED WITHIN THE UPPER GREAT LAKES LANDSCAPE

    Get PDF
    Moderate severity disturbances, which only kill a subset of canopy trees (e.g., via insects, pathogens, and windthrow), are increasingly widespread, and can alter forest structure and production. Whether moderate severity disturbance similarly affects the net primary production (NPP) of different forest stands within inherently heterogeneous landscapes, however, is unknown. We experimentally disturbed three, 2-ha stands varying in forest structure and primary production, reducing stand basal area 38 to 66 % by stem girdling all mature early successional aspen (Populus) and birch (Betula). For nearly a decade, we examined how the forest stands restructured and recovered, and linked post-recovery physical and biological structure with light absorption and wood NPP. Disturbance significantly altered the structure of all stands and prompted a similar decade-long pattern of primary production decline and recovery. All stands exhibited an initial reduction in wood NPP, recovering to, or exceeded pre-disturbance levels within eight years. Following the recovery of wood NPP, more biologically diverse forest canopies with higher leaf area indexes captured more light, and, subsequently, had higher rates of wood NPP. We provide limited support that disturbance may enhance long-term primary production through its effects on canopy structural reorganization. We conclude that, while the forests examined responded similarly to disturbance, improved understanding of different forest ecosystems’ response to disturbance remains critical to informing carbon management decisions across diverse landscape mosaics

    Preserved boreal zone forest massif mass estimation during fire extinguishing by liquid aerosol

    Get PDF
    This study contains results of experimental studies into establishing the principles of decreasing the model of fire source mass when extinguishing the ground cover of deciduous and mixed forests by liquid aerosol. The experiments were carried out with typical forest fuels - birch leaves and mixed non-living components of temperate forest. Densities of forest fuel samples in a model of fire source were variated in the corresponding real practice ranges: 20.26–54.70 kg/m{3} for birch leaves and 27.54–72.18 kg/m{3} for a mixed forest fuel. Dimensions of droplets generated by the nozzle amounted to 0.01–0.12 mm. It is consistent with modern aerosol fire extinguishing systems. The dependence of the initial forest fuel sample mass on the remaining mass after ending of the pyrolysis reaction was established

    Occurrence and management of oak in southern Swedish forests

    Get PDF
    This article describes the current proportions of forest types with oak (Quercus robur and Q. petraea) in southern Sweden, provides an overview of oak distribution over time and reviews literature about oak regeneration relevant for the region. Further we discuss silvicultural possibilities to maintain and promote oak in Scandinavia. In Götaland pure oak forest covers 1% of the forest area and mixed forest types with > 10% oak proportion cover approximately 10% of the area. Common types of mixture are spruce-oak and pine-oak forest. Both mixtures are frequent in mature forest, especially pine-oak. Additionally, about one third of spruce-oak mixtures can be found in medium-aged forest. Intensive management would be necessary to promote single oak trees in old pine stands or spruce plantations, but the proportion of oak in coniferous forest provides some potential to maintain additional oak trees. The distribution of acorns by Jays, enhanced measures against browsing, and the release of single oak trees from competing tree species could help to maintain more oak trees for nature conservation. However, regarding management of oak for timber production, conventional methods are recommended. Planting after clear cutting of coniferous forest, or short shelter periods after mast years in oak stands, are established methods to regenerate pure oak stands. Another possibility to develop mature oak forest are mixed oak-spruce plantations, as traditionally practised in a small region in southern Sweden. The different approaches of oak management in Sweden were presented in April 2012 on the annual meeting of the section silviculture of DVFFA (German Union of Forest Research Organizations) in Wermsdorf near Leipzig to give an overview and access to recent forest research in Sweden

    Phosphorus limitation of aboveground production in northern hardwood forests

    Get PDF
    Forest productivity on glacially derived soils with weatherable phosphorus (P) is expected to be limited by nitrogen (N), according to theories of long-term ecosystem development. However, recent studies and model simulations based on resource optimization theory indicate that productivity can be co-limited by N and P. We conducted a full factorial N × P fertilization experiment in 13 northern hardwood forest stands of three age classes in central New Hampshire, USA, to test the hypothesis that forest productivity is co-limited by N and P. We also asked whether the response of productivity to N and P addition differs among species and whether differential species responses contribute to community-level co-limitation. Plots in each stand were fertilized with 30 kg N·ha−1·yr−1, 10 kg P·ha−1·yr−1, N + P, or neither nutrient (control) for four growing seasons. The productivity response to treatments was assessed using per-tree annual relative basal area increment (RBAI) as an index of growth. RBAI responded significantly to P (P = 0.02) but not to N (P = 0.73). However, evidence for P limitation was not uniform among stands. RBAI responded to P fertilization in mid-age (P = 0.02) and mature (P = 0.07) stands, each taken as a group, but was greatest in N-fertilized plots of two stands in these age classes, and there was no significant effect of P in the young stands. Both white birch (Betula papyrifera Marsh.) and beech (Fagus grandifolia Ehrh.) responded significantly to P; no species responded significantly to N. We did not find evidence for N and P co-limitation of tree growth. The response to N + P did not differ from that to P alone, and there was no significant N × P interaction (P = 0.68). Our P limitation results support neither the N limitation prediction of ecosystem theory nor the N and P co-limitation prediction of resource optimization theory, but could be a consequence of long-term anthropogenic N deposition in these forests. Inconsistencies in response to P suggest that successional status and variation in site conditions influence patterns of nutrient limitation and recycling across the northern hardwood forest landscape

    Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.

    Get PDF
    Abstract Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event

    Ice storm effects on the canopy structure of a northern hardwood forest after 8 years

    Get PDF
    Ice storms can cause severe damage to forest canopies, resulting in differential mortality among tree species and size classes and leading to long-lasting changes in the vertical structure and composition of the forest. An intense ice storm in 1998 damaged large areas of the northern hardwood forest, including much of the Hubbard Brook Experimental Forest, New Hampshire (USA). Following up on detailed poststorm assessments, we measured changes in the vertical structure of the forest canopy 8 years poststorm. We focused on how the presence of disease-induced advance regeneration of American beech (Fagus grandifolia Ehrh.) has affected canopy structure in the recovering forest. We measured foliage-height profiles using a point-quadrat approach and a pole-mounted leaf area index (LAI) sensor. Although the total LAIs of damaged and undamaged areas were similar, areas damaged in 1998 showed an increased proportion of total leaf area between 6 and 10 m above the ground. The foliage at this height is largely (54%) beech. To the extent that this heavily beech-dominated understory layer suppresses regeneration of other species, these findings suggest that rare disturbances of mature northern hardwood forests affected by beech bark disease will increase the importance of damage-prone and economically marginal beech

    Historical Population Increases and Related Inciting Factors of Agrilus anxius, Agrilus bilineatus, and Agrilus granulatus liragus (Coleoptera: Buprestidae) in the Lake States (Michigan, Minnesota, and Wisconsin)

    Get PDF
    Three native species of tree-infesting Agrilus have regularly reached outbreak levels in the Lake States (Michigan, Minnesota, and Wisconsin), including A. anxius Gory (bronze birch borer), A. bilineatus (Weber) (twolined chestnut borer), and A. granulatus liragus Barter & Brown (bronze poplar borer). The main host trees for these Agrilus are species of Betula for A. anxius, Castanea and Quercus for A. bilineatus, and Populus for A. granulatus liragus. Based on 197 annual forest health reports for Michigan (1950–2017, 66 years), Minnesota (1950–2017, 64 years), and Wisconsin (1951–2017, 67 years), A. bilineatus was the most often reported Agrilus species in all three states (mentioned in 90 annual reports), with A. anxius second (71 reports) and A. granulatus liragus third (21 reports). Drought was the most commonly reported inciting factor for outbreaks of all three Agrilus species, with defoliation events ranking second. The top two defoliators reported as inciting outbreaks of each species were, in decreasing order, Fenusa pumila Leach (Hymenoptera: Tenthredinidae; birch leafminer) tied with Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae; forest tent caterpillar) for A. anxius; M. disstria and Alsophila pometaria (Harris) (Lepidoptera: Geometridae; fall cankerworm) for A. bilineatus; and M. disstria and Choristoneura conflictana (Walker) (Lepidoptera: Tortricidae; large aspen tortrix) for A. granulatus liragus. Other environmental factors occasionally listed as inciting Agrilus outbreaks included late spring frosts, ice storms, and strong wind events

    A phytosociological survey of the boreal forest (Vaccinio-Piceetea) in North America

    Get PDF
    A survey of syntaxa of vegetation of North American boreal forests (class Vaccinio-Piceetea) is presented. This phytosociological survey, carried out combining the Braun-Blanquet method with numerical syntaxonomical analyses (cluster and correspondence analysis), describes the associations of the North American boreal forests, which have several species, varieties or vicariant species in common with their Eurasian counterparts, and can be placed in the class Vaccinio-Piceetea. By means of tabular and multivariate analyses, 2084 North American relevés were compared with 3273 relevés from European, Japanese and Korean boreal forest, to describe and typify 4 orders, 10 alliances and 37 associations. Diagnostic tables, ordination, clustering, and climatic, edaphic and biogeographical data were used to show floristic affinities among these syntaxa and interpret their distribution areas. Syntaxa were briefly characterized by their floristic composition, physiognomy, succession, zonation, and biogeographical distribution

    Forest Net Primary Production Resistance Across a Gradient of Moderate Disturbance

    Get PDF
    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C uptake and loss. Moderate disturbances that kill or defoliate only a subset of canopy trees such as insect defoliation, drought, and age-related senescence are increasing in extent and frequency; yet, little is known about the effect of moderate disturbance on forest production and the mechanisms sustaining or supporting the recovery of the C cycle across a range of moderate disturbance severities. We used a broad plot-scale gradient of upper canopy tree mortality within a large manipulation of forest disturbance to: 1) quantify how aboveground wood net primary production (ANPPw) responds to a range of moderate disturbance severities and; 2) identify the primary mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw was highly resistant to moderate disturbance, with production levels sustained following the senescence of 9 to \u3e 60 % of the upper canopy tree basal area. As upper canopy gap fraction increased with rising disturbance severity, greater light availability to the subcanopy enhanced leaf-level C uptake and the growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses. As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased at high levels of disturbance severity and leaf area loss. These findings provide a mechanistic explanation for sustained ANPPw across the disturbance gradient, in which the physiological and growth enhancement of undisturbed vegetation was proportional to the level of disturbance severity. Our results have important ecological and management implications, showing that moderate disturbances may minimally alter ecosystem functions such as C storage
    corecore