26,571 research outputs found

    Tectonic evolution of Lavinia Planitia, Venus

    Get PDF
    High resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. Lavinia is a broad lowland over 2000 km across, centered at about 45 deg S latitude, 345 deg E longitude. Herein, the tectonic evolution of Lavinia is discussed, and its possible relationship to processes operating in the planet's interior. The discussion is restricted to the region from 37.3 to 52.6 deg S latitude and from about 340 to 0 deg E longitude. One of the most interesting characteristics of Lavinia is that the entire region possesses a regional tectonic framework of striking regularity. Lavinia is also transected by a complex pattern of belts of intense tectonic deformation known as ridge belts. Despite the gross topographic similarity of all of the ridge belts in Lavinia, they exhibit two rather distinct styles of near surface deformation. One is composed of sets of broad, arch-like ridges rising above the surrounding plains. In the other type, obvious fold-like ridges are rare to absent in the radar images. Both type show evidence for small amounts of shear distributed across the belts

    Tectonic evolution of the Western Australian Shield

    Get PDF
    Geological and geochronological studies in the Western Australian Shield were updated. This terrane bears many similarities to the Indian Shield since they were neighboring parts of Gondwanaland. Western Australia consists of two cratons (Pilbara and Yilgarn) and four orogenic belts (Capricorn, Pingarra, Albany-Fraser, and Patterson), as well as some relatively young (1.6 to 0.75 Ga) sedimentary rocks. The two cratonic blocks are both older than about 2.5 Ga, and the orogenic belts range in age from 2.0 to 0.65 Ga

    ERTS-1, earthquakes, and tectonic evolution in Alaska

    Get PDF
    In comparing seismicity patterns in Alaska with ERTS-1 imagery, it is striking to see the frequency with which earthquake epicenters fall on, or near, lineaments visible on the imagery. Often these lineaments prove to be tectonics faults which have been mapped in the field. But equally as often, existing geologic and tectonic maps show no evidence of these features. The remoteness and inaccessibility of most of Alaska is responsible, in large part, for the inadequacy of the mapping. ERTS-1 imagery is filling a vital need in providing much of the missing information, and is pointing out many areas of potential earthquake hazard. Earthquakes in central and south-central Alaska result when the northeastern corner of the north Pacific lithospheric plate underthrusts the continent. North of Mt. McKinley, the seismicity is continental in nature and of shallow origin, with earthquakes occurring on lineaments, and frequently at intersections of lineaments. The shallower events tend to align themselves with lineaments visible on the imagery

    Geological evolution of the Pietersburg greenstonebelt, South Africa and associated gold mineralization

    Get PDF
    The polyphase history of gold mineralization seen in the Pietersburg greenstone belt is integrated with the geochemical and tectonic evolution of greenstone belts as a whole. The four distinct regional geological settings of gold mineralization are described

    Constraints on the thermal and tectonic evolution of Greymouth coalfield

    Get PDF
    The southern end of the Paparoa Range in Westland, South Island, New Zealand, comprises an asymmetrical, southward plunging, faulted (Brunner-Mt Davy) anticline, the eastern limb of which is common with the western limb of an asymmetrical (Grey Valley) syncline forming a Neogene foreland basin (Grey Valley Trough). The faulted anticline is a classic inversion structure: compression during the Neogene, associated with the development of the modern Australia-Pacific plate boundary, caused a pre-existing normal fault zone, about which a late Cretaceous-Oligocene extensional half graben had formed (Paparoa Trough), to change its sense of displacement. The resulting basement loading formed the foreland basin, containing up to 3 km of mainly marine sedimentary section. Fission track results for apatite concentrates from 41 shallow drillhole and outcrop samples from the Greymouth Coalfield part of the Brunner-Mt Davy Anticline are reported and interpreted, to better establish the timing and amount of inversion, and hence the mechanism of inversion. The fission track results integrated with modelling of vitrinite reflectance data, show that the maximum paleotemperatures experienced during burial of the Late Cretaceous and mid-Eocene coal-bearing succession everywhere exceeded 85deg.C, and reached a peak of 180deg.C along the axis of the former basin. Cooling from maximum temperatures occurred during three discrete phases: 20-15 Ma, 12-7 Ma, and c. 2 Ma to the present. The amount of denudation has been variable across the inverted basin, decreasing westward from a maximum of c. 2.5 km during the first deformation phase, c. 1.2 km during the second phase, and 1.4 km during the third phase. It appears that exhumation over the coalfield continued for about 2 m.y. beyond the biostratigraphically determined time ranges of each of two synorogenic unconformities along the western limb of the Grey Valley Syncline. Stick-slip behaviour on the range front fault that localised the inversion is inferred. The tectonic evolution of the anticline-syncline pair at the southern end of the Paparoa Range, is therefore identical in style, and similar in timing, to the development of the Papahaua Range-Westport Trough across the Kongahu Fault Zone, in the vicinity of Buller Coalfield

    Tectonic evolution of the Archaean high-grade terrain of South India

    Get PDF
    The southern Indian shield consists of three major tectonic provinces viz., (1) Dharwar Craton, (2) Eastern Ghat Mobile Belt, and (3) Pandyan Mobile Belt. An understanding of their mutual relations is crucial for formulating crustal evolution models. The tectonic evolution of these provinces is summarized

    Eastern Ishtar Terra: Tectonic evolution derived from recognized features

    Get PDF
    Previous analyses have recognized several styles and orientations of compressional deformation, crustal convergence, and crustal thickening in Eastern Ishtar Terra. An east to west sense of crustal convergence through small scale folding, thrusting, and buckling is reflected in the high topography and ridge-and-valley morphology of Maxwell Montes and the adjacent portion of Fortuna Tessera. This east to west convergence was accompanied by up to 1000 km of lateral motion and large scale strike-slip faulting within two converging shear zones which has resulted in the present morphology of Maxwell Montes. A more northeast to southwest sense of convergence through large scale buckling and imbrication is reflected in large, northwest-trending scarps along the entire northern boundary of Ishtar Terra, with up to 2 km of relief present at many of the scarps. It was previously suggested that both styles of compression have occurred at the expense of pre-existing tessera regions which have then been overprinted by the latest convergence event. The difference in style is attributed mostly to differences in the properties of the crust converging with the tessera blocks. If one, presumably thick, tessera block converges with another tessera region, then the widespread, distributed style of deformation occurs, as observed in western Fortuna Tessera. However, if relatively thin crust (such as suggested for the North Polar Plains converges with thicker tessera regions, then localized deformation occurs, as reflected in the scarps along Northern Ishtar Terra. The purpose is to identify the types of features observed in Eastern Ishtar Terra. Their potential temporal and spatial relationships, is described, possible origins for them is suggested, and how the interpretation of some of these features has led to the multiple-style tectonic evolution model described is shown

    Igneous and tectonic evolution of Venusian and terrestrial coronae

    Get PDF
    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions

    Tectonic evolution of a continental collision zone: A thermomechanical numerical model

    Get PDF
    We model evolution of a continent-continent collision and draw some parallels with the tectonic evolution of the Himalaya. We use a large-scale visco-plasto-elastic thermomechanical model that has a free upper surface, accounts for erosion and deposition and allows for all modes of lithospheric deformation. For quartz/olivine rheology and 60 mm/yr convergence rate, the continental subduction is stable, and the model predicts three distinct phases. During the phase 1 (120 km or 6% of shortening), deformation is characterized by back thrusting around the suture zone. Some amount of delaminated lower crust accumulates at depth. During phase 2 (120 km–420 km or 6%–22% of shortening), this crustal root is exhumed (medium- to high-grade rocks) along a newly formed major thrust fault. This stage bears similarities with the period of coeval activity of the Main Central thrust and of the South Tibetan Detachment between 20–16 Myr ago. During phase 3 (>420 km or 22% of shortening), the crust is scraped off from the mantle lithosphere and is incorporated into large crustal wedge. Deformation is localized around frontal thrust faults. This kinematics should produce only low- to medium-grade exhumation. This stage might be compared with the tectonics that has prevailed in the Himalaya over the last 15 Myr allowing for the formation of the Lesser Himalaya. The experiment is conducted at constant convergence rate, which implies increasing compressive force. Considering that this force is constant in nature, this result may be equivalent to a slowing down of the convergence rate as was observed during the India-Asia collision
    corecore