88,612 research outputs found

    Evaluation criteria for software classification inventories, accuracies, and maps

    Get PDF
    Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table

    Network On Network for Tabular Data Classification in Real-world Applications

    Full text link
    Tabular data is the most common data format adopted by our customers ranging from retail, finance to E-commerce, and tabular data classification plays an essential role to their businesses. In this paper, we present Network On Network (NON), a practical tabular data classification model based on deep neural network to provide accurate predictions. Various deep methods have been proposed and promising progress has been made. However, most of them use operations like neural network and factorization machines to fuse the embeddings of different features directly, and linearly combine the outputs of those operations to get the final prediction. As a result, the intra-field information and the non-linear interactions between those operations (e.g. neural network and factorization machines) are ignored. Intra-field information is the information that features inside each field belong to the same field. NON is proposed to take full advantage of intra-field information and non-linear interactions. It consists of three components: field-wise network at the bottom to capture the intra-field information, across field network in the middle to choose suitable operations data-drivenly, and operation fusion network on the top to fuse outputs of the chosen operations deeply. Extensive experiments on six real-world datasets demonstrate NON can outperform the state-of-the-art models significantly. Furthermore, both qualitative and quantitative study of the features in the embedding space show NON can capture intra-field information effectively

    Multimodal Machine Learning for Automated ICD Coding

    Full text link
    This study presents a multimodal machine learning model to predict ICD-10 diagnostic codes. We developed separate machine learning models that can handle data from different modalities, including unstructured text, semi-structured text and structured tabular data. We further employed an ensemble method to integrate all modality-specific models to generate ICD-10 codes. Key evidence was also extracted to make our prediction more convincing and explainable. We used the Medical Information Mart for Intensive Care III (MIMIC -III) dataset to validate our approach. For ICD code prediction, our best-performing model (micro-F1 = 0.7633, micro-AUC = 0.9541) significantly outperforms other baseline models including TF-IDF (micro-F1 = 0.6721, micro-AUC = 0.7879) and Text-CNN model (micro-F1 = 0.6569, micro-AUC = 0.9235). For interpretability, our approach achieves a Jaccard Similarity Coefficient (JSC) of 0.1806 on text data and 0.3105 on tabular data, where well-trained physicians achieve 0.2780 and 0.5002 respectively.Comment: Machine Learning for Healthcare 201

    LIMEtree: Interactively Customisable Explanations Based on Local Surrogate Multi-output Regression Trees

    Get PDF
    Systems based on artificial intelligence and machine learning models should be transparent, in the sense of being capable of explaining their decisions to gain humans' approval and trust. While there are a number of explainability techniques that can be used to this end, many of them are only capable of outputting a single one-size-fits-all explanation that simply cannot address all of the explainees' diverse needs. In this work we introduce a model-agnostic and post-hoc local explainability technique for black-box predictions called LIMEtree, which employs surrogate multi-output regression trees. We validate our algorithm on a deep neural network trained for object detection in images and compare it against Local Interpretable Model-agnostic Explanations (LIME). Our method comes with local fidelity guarantees and can produce a range of diverse explanation types, including contrastive and counterfactual explanations praised in the literature. Some of these explanations can be interactively personalised to create bespoke, meaningful and actionable insights into the model's behaviour. While other methods may give an illusion of customisability by wrapping, otherwise static, explanations in an interactive interface, our explanations are truly interactive, in the sense of allowing the user to "interrogate" a black-box model. LIMEtree can therefore produce consistent explanations on which an interactive exploratory process can be built
    corecore