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TECHNICAL MEMORANDUM X-73347

EVALUATION CRITERIA FOR SOFTWARE CLASSIFICATION
INVENTORIES, ACCURACIES, AND MAPS

|. INTRODUCTION

Considerable emphasis is now being given to the evaluation of image
classification and compression techniques. This report describes the evaluation
criteria and procedures that have heen proposed and developed to focus atlention
on the existing state of the art and provide guidance {or future research ellorts,
Although there are many criteria, e.g. costs, running times, computer resources,
ele., that should be considered in evaluating techniques, the main emphasis of
this report is concerncd with statistical performance.

Assume that multispectral image data have been classilied using a
particular technique to produce a classification map (CM) and that the CM has
been overlayed with a digital version of a ground truth map (GTM). The normal
procedure is to produce a contingency table, such as shown in Table 1, and
deterinine a percentage accuracy as o measurce of the goodness of a classification
technique. However, there would appear to be considerable risk involved in
judging the merits of various classilication techniques based upon this one
number. Hence, one of the purposes of this report is to mathematically explore
the contingency table to determine how much additional infnrmation can be
extracted. However, it must also be kept in mind that the table only provides
numerical results and containg relatively little information concerning the map
producing abilities of the various classificalion techniques. The desired end
result is that there will be a sulficient number of mathematicul eriteria that
can be examined to ensure as much completeness in the evalualion as possible,
Criteriz and procedures similar to what is discussed in the report can also be
adapted to evaluate combression and change delection analysis results.

The contingency tables used in this report resulted from a cooperative
evaluation of classification Lechniques which involved Marshall Space Flight
Center, Huntsville, Alabama, and the Tennessce sState Planning Offlice, Nasgh-
ville, Tennessee., Landsal data [rom the Bald Knob, Tenncssee, Quadrangle
were used as a test site and four sets of seasonal data werc also included for
multitemporal evaluation. All of the techniques discussed in this report are
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supervised techniques and all used the same training areas for the classification

results. The five classification results that are discussed include the Gaussian
Maximum Likelihood which was used on one season of data as well as all four

seasons simultaneously, the Linear Classifier Model which was also used on

one season as well as all four seasons, and the Density Slicing Classifier which

was used on only one season of data, The Linear Classifier uses hyperplanes

to separate feature categories, while the Density Slicing Method selects a .
channel of data as well as a class interval in that channel to separate feature

categories,

Section II describes contingency tables and tests derived from the tables
in a general manner, and Section IIT describes the evaluation of the classification
analysis results, Section IV describes a proposed approach f[or evaluating
classification maps that reduces back to the normally used contingency table.

TABLE 1, GENERAL 5 BY 5 CONTINGENCY TABLE

CM
GTM 1 2 3 4 5

1 n’11 ny n, ng ny, n . e, el

2 n722 Ny Do, noo Ny, Nys e, e’

3 n”33 o Ny Ngo gy n,. c, e3

4 n744 0, no nq N, e e, el

5 n755 Ny n., n.. N, N, e, e’s
0y 0, 0g o4 O N %
o1 0”2 073 0’4 075 %61 N,
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II. MATHEMATICAL DESCRIPTION OF EVALUATION CRITERIA

Talide 1 shows the general form of a 5 by 5 contingency table that is con-
sistent in size with the tables used in Section I11. The table indicates that there
are five categories on the GTM heing compared with five categories on the CM.

The elements ni i tell how many pixels in class j on the CM occur af the
H
same locations as pixels in class i on the GTM. The symnhol e is the number

of pixels belonging to category i1 on the GTM and is the number that is expected
to be obtained from the classification results. The symbol 0j is the number of

pixels that were classified in category j on the CM or the number that is
ohbserved, which is usually different [vom what is expected. Mathematically
speaking

<
@, = Z;n., and 0, = En.. . (1)
" ] - 1)
J i .
The symbols 7 are probabilitics of occurrences,

= = J r =
e = &/Np Ty =0/Np, and m, n/Np (2)

where NT is the total number of pixcls. The symhols 'Nc, % e, and %] ave

the number of correctly classilied pixels, the classilication accuracy, and
inventory accuracy, respectively., These ave computed using the [olowing
relations:

e, — 0,
. o _ N _ o1 1
N = Lnﬁ, %e = 100(N_/N.) . and %] = 100 |1 ‘%; o~

(3)

Tor the inventory accuracy, the number wrong is given by the summation
of the absolute value differences, which has to be divided by two. The factor of
two is necessary because if one pixel changes category two columns are affected
on the contingency table and the pixels are in eflect counted twice, The inventory
accuracy can also be computed by choosing the smaller of e, or 0 summing

over the categories, and multiplying hy 100/NT which gives the same result.

3




Two other tables can be generated from the actual contingency table;
however, it is not necessary to do so because the actual table already contains
the information, These two tables will be discussed to illustrate the concepts of
randémness and optimumness.

The concept of randomness is llustrated using the maximum likelihood
estimators. The likelihood of an observed sample of NT being picked from an
assumed population, i.e., ei and o i are given and remain constant under all
conditions, is tantamount to replacing ni,j with eioj /NTor onjei in the contin~
gency table, ‘The only other quantities that change in the table are Nc , the

number of correctly classified pixels, and %e. This result should hold true for
any sample of size N’I‘ picked from an assumed population and should he a

random or ''worst case™ classification accuracy that is expected.

The optimum case classification acenracy that can be expected for a
given inventory (ei and oj given) occurs when the classification accuracy
equals the inventory accuracy. This is tanfamount to replacing nl’i with the
smaller of e, or o, on the diagonal, and the remai; ing ni,j(i #j) will either
be zero or indeterminant. The only other quantities that are changed are again

NC and %e.

There are several statistical performance criteria that can now be calcu-
lated from the contingency table and these are discussed as follows:

1. The first criteria is the actual classification accuracy. The classi-
fication accuracies for the random and optimwmn cases provide upper
and lower limits fur the accuracy range, and a percent of optimum
accuracy can be computed for a technigus as a measure of how well
it performed versus how well it could have performed,

The remaining criteria are concerned with chi-squared tests that are convenient
to use because the table contains information related to what is expected and
what is observed, The chi-squared tests and formulas {or coraputing the chi-
squared values relating to those tests are as follows;

2. Hypothesis: The distribution (oj) of the classification inventory

agrees with the distribution (ej) of the ground tiuth inventory:
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(0, ~e.)
2 vz, 1w o2 2 |
X = %, -~]—1—ej = %Joj /e, =N, = --~NT [L 0 /T, I\T]. (4)

3. Hypothesis: The distribution (ni i) of the correclly classified pixels
¥

agrees with the distribution of the ground truth inventory:

(5)
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4. Hypothesis: The distribution of the number of correctly and incor-
rectly classified pixels is optimum with respect to the given inven-
tory and without regard to class:

9

2: + |—(i1——-—€)—l| N H No=) ¥ L.%;:ii_l_
2\ g 2 = N B T\
—— ,i,

AN

1

A e o]
) 2 L 2
' (6)

These three chi-squared values should he as small as possible to satisly the
hypotheses, while the remaining chi-squared valucs o he discussed should be
as large as possible so that the hypotheses will he rejected.

9. Hypothesis: The correctly classified pixels are randomly distributed:

2
143
2 1 v 1L,iR ¢ 2
X3 7R ) T o~ Ale d (7)

A cti oiil

where ANc and RNC are the number of correctly classificed pixels for

the actual and raandom case.
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6. Hypothesis: Each classification feature is randomly distributed
among the ground truth features according to the classification g

inventory:
2 :
2 1 N2
s = :a__ E " ei ! (8)
1 ] 0]

where i refers to the feature on the GTM and j refers to the
feature on the CM.,

7. Hypothesis: Each ground truth frature is randomly distributed
among the classification featurss according to the ground truth

inventory:
Fon
2 _ 1 |yni 2 (9
6 = o |4 T O '
iliei

where i and j have the same meaning as in equation (8).

8. Hypothesis: The number of correctly and incorrectly classified
pixels are randomly distributed without regard to class:

2] [Beuae)]

x::: = — + (10)
Lo & LRI A
i i
9. Hypothesis: The number of correctly and incorrectly classified
pixels for a particalar class are randomly distributed:
2 2
9 nj j—o'Tj ej ni j'-o‘ﬂ'j ej
- [l 4 2 ]
j*8 i, e, e, - T e, ’ (11)

0j ] i o]

where j represents the class.




10. Hypothesis: The distribution of the classified pixels is independent
of the ground {ryth:

2 S “?1 ‘
1,) 1]

11. The final criterion is the coefficient of contingency, which is similar

to a correlation coefficient and is calculated from \g The coelli~
cient is given by
5 1/2
8
N, (k-1
1\( { )

where k is either the number of [eatures on the GTM or CM,
whichever is smaller.

For relatively comparing various classification technigues, the best
values observed for all the chi~squared tests can be chosen as the expected chi-
squared values. The actual observed chi-squared values for a particular tech-
nique can then be measured agoinst what is expected by computing chi-squared
values, The use of these criteria is illustrated in the next section.

|11, EVALUATION RESULTS

Tables 2 through 6 are the contingency tables for the various techniques
being examined, and u, t, a, 1, and w are the feature ecategories urban, trans-—
portation, agriculture, forest, and water, respectively. The technigues are
identified by the labels:

MLCM — Maximum Likelihood Clagsifier (Map)

LCM — Linear Classifier (Map)

MLMCM — Maximum Likelihood Multitemporal Classifier { Map)
LMCM — Linear Multitemporal Classifier (Map)

DSCM — Density Slicing Classilier {Map)

-1



All of the classification programs are supervised technigues, and all
programs were supplied the same training areas. The multitemporal programs
used 16 channels of seagonal data rather than one season containing only 4
channels, Thus, all of the results have one season of data in common.

TABLE 2, CONTINGENCY TABLE FOER GTM VERSUS MLCM

MLCM
oM u t a f W
u . 2138 59 47 35 134 1 276 .0083
t . 1931 129 163 ‘ 142 403 7 844| .02583
a . G165 | 2325 751 5904 <82 14 9576 . 2868
f JTRAG | R 2404 745 [17488 238 | 22011} .6593
)

w . 4639 40 a5 11 218 315 879 .0203
3688 S460 1 6837 | 18825 575 | 33386| Tl.G67

L1105 | .1036].2048 |.5639 | .0172 | 81.94) 23928

Table 7 lists the statistical criteria as a function of classification tech-
nique, and the numbers followed by an asterisk indicate the best numbers that
were observed, The degrees of freedom (df) associated with each chi-squared
value is also listed in Table 7, Of the 26 possible best numbers, MLCM has 6
of them, LCM has 3, MLMCM has 11, LMCM has 4, and DSCM has 2, By using
the numbers followed by an asterisk as expected values, a chi-squared value can
be computed for each technique that has n-1 or 25 df. These chi-squared
valueg are listed in Table &,

Tables 2 through 8 represent a consiverable amount of information that
needs an equal amount of discussion. First, for 1 df there is a 0.05 probability
of finding a chi-squared value larger than 3.841 and a 0, 01 probabiiity of finding
a value larger than 6. 635. TFor 4 df the 0,05 and 0. 01 chi-squared values are
9,488 and 13.277; for 16 df the 0,05 and +), 01 values are 26. 296 and 32.0; and
for 25 df the 0,05 and 0. 01 values are 37.652 and 44, 314, Using these values



TABLE 3. CONTINGENCY TABLE FOR GTM VERSUS LCM

GTM oM u t a f w
u . 181l 50 36 41 149 0 276} .G083
t . 1788 101 151 164 427 1 8445 , 02563
a .6587 | 1811 G10| 6308 842 5 9576} . ;868
f . 8091 947 2180 897 (17809 178 | 22011 . 6593
W L4271 éS 62 17 282 290 679 .0203
2937 3039 | 7427 |19509 474 | 33386 73.71
. (88 .091],2225 |, 5813 L0142 | B5.45] 24608

TABLE 4, CONTINGENCY TABLE TOR GTM VERSUS MLMCM
LMCM

GTM u t a f w
u L2101 58 49 44 124 1 276 . 0083
t . 2927 101 247 175 316 5 8441 . 0253
a L7049 | 1369 1126 6750 299 32 9576 .2868
f L7641 1026 2718| 1088 [ 16819 360 | 22011| .6583
w . 5287 346 133 34 117 359 G679 .0203
2590 42731 8091 {17675 757 | 33386] 72,38
L0776 L1281 .2423 [.52941 . 0227 82.56| 24233




TABLE 5. CONTINGENCY TABLE FOR GTM VERSUS LMCM

10

LMCM
GTM u t a f w
u L1715 49 35 43 1438 1 276 | . 0083
t . 1765 8% 149 160 443 3 844 j . 0253
a L6638 1 1714 839 | 6357 650 16 9576 | . 2868
f . 8454 875 1267 | 1044 {8609 216 | 22011} .6593
w 4212 34 72 21 266 286 679 | . 0203
2761 2362 | 76256 pRO116 522 | 33386 | 76.23
. 0827 L0707 |.2284 6025 . 0156 | 88.01 [ 25450
TABLE 6. CONTINGENCY TABLE FOR GTM VERSUS DSCM
DSCM T
GTM u t a f w
u . 2464 68 51 33 124 0 276} . 0083
t . 1965 159 185 117 401 2 844| .0253
a . 0473 | 2767 609 | 5241 944 15 9576} , 2868
£ . 7497 | 1658 3085 595 [16502 7 22011} .G593
w .3608 43 44 12 335 245 679 . 0203
4695 3954 | 5998 |18306 433 | 33386! 65.86
L1406 |.1184 |.1797 |.5483 .013 | 77.45| 21988

i e ST i T




TABLE 7. STATISTIC VERSUS TECHNIQUE

w MLCM LeM MLMCM LAMCY TSCM
Atatiste o
Ttambm Classiffeatdon Accuraey S -, 2 12,09 itk hG £ ¥
Actual Classtlicatim Aceurady 71,67 7371 72,68 6. 05 (g ]
Inventory or Optlnuon decursey 5191 Bh.5 82,56 Lo, {11 77,045
Percent of Optimnm Aceuraey 5,32 70,81 75,22 71.80 7. 04
X: 4df 51574 20484 20195 20670 Rl ]
2z o .
.}.‘2 q df 801 796 q07 2y 1361
Xg 4df 2264 Hicltyd 2310 ERHD] 2567
f‘i 4df 6102 4954 5833 4305 q773*
uX: 1 df 53 44 gie 53 40
LXSZ 4df 101 p1ix] 251* iGL EQ
ax; 4df 13941% 13545 13640 13725 iZa7l
fx§ 4 df GoGeY 5751 5368 5906 5265
wx: 4 df TEGD 8371+ 7956 7348 G467
Ko s 1064+ 167 #86 1608 2230
Ko 151 10 220 250 309+
nx: 4 df 11702 11590 11951+ 11256 10173 °
IX§ 4 df G459 983 (7118 67%5 5177
2 . J——
WXG 4 df Bogg s368* 7885 7435 G500
X: 1df 10434 10926 12557* 1158318 TYEY
2 1dl 30 a0 56+ 33
uXB 26
tXﬁ 1df T3 K] 205* 134 48
uX: 1d 998 106531 111Gi* 1os0q 2777
IX: 1df AT60 4579 1867 5124~ 2480
AT 8015 g269¢ | 7829 775 5102
X: 16 df 2HTH9 ¢ 27967 27921 29173 214066
R 4df 45,404 45,060 5,72 15. 14 42,493

ORIGINAL PAGTE IS
OF POOR QUALITY
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TABLE 8, TECHNIQUE VERSUS CHI-SQUARED VALUES
USING TABLE 7 DATA

Technique MLCM LCM MLMCM | LMCM DSCM

Chi-squared 48950 5100 1597 G409 207832

and examining Tables 7 and 8 ghow thui every single hypothesis was rejected
and hardly any of the chi-squared valucs are even close to these nummbers. An
attempt was made to understand why the chi-squared values are so large by
using the inventory from MLCM and computing the chi~squared values as a
furction of inventory accuracy. Equation (3) shows that the proportion of
wrongly classified pixels for each category j is given by

[Tl (14)

p .
_NT

If it assumied that these proportions remain constant for any inventory
accuracy, then Table 9 shows the inventory and chi-sguared which result from
this assumption,

TABLE 9. INVENTORY ACCURACY VERSUS CHI-SQUARED

Inventory Category, cij
u t a f w %1 X i Optimum ,’('2
370 916 9500 21923 | 676 99,5 39.12 0.1187
465 289 9424 21835 | G673 ag 158. 21 0.4997
1221 1568 8817 21129 Gb0o 95 3953 13,685
2166 2283 8069 20247 622 20 15817 58.156
3110 3017 7300 19365 | 59. 85 35564 139
}
4055 3742 6542 18483 | 564 80 $3239 263

12




Thus, it is not possible to accept the hypothesis that the distribution of the
classification inventory is statistically significant when compared with the ground
truth inventory even though the inventory is 99,5 percent correct, If the optimum
classification accuracy is considered, then the chi-squared value is almost sig-
nificant at 95 percent classification accuracy. Hence, it appears that the chi-
squared tests are extremely strict, but hecause of this it also appears to bhe
extremely good at relatively discriminating between the performance of various
techniques.

Tables 7 and 8 show that different conclusions would he obtained if the
techniques were judged on classgification accuracy only versus a set of criteria,
Presumahly, the set of criteria provides for better judgment because it offers
a more complete description of performance.

In Table 7, X:f shows that MLMCM benefited the most from the use of
multitemporal data even through the classification accurac; increased less than
2 percent and the inventory accuracy less than 1 percent. This inGicates that
the inventory distribution improved considerably, and the inventory has to be
relied on when there are no ground truth results. The inventory accuracy is
usually higher than the classification accuracy because the misclassified pixels
tend to cancel out not having classified enough pixels correctly.

The values for X:ﬁ show that the correclly classified pixels are better
estimators of the ground truth inventory distribution than the classification
inventory. Hence the error-cancelling effect of the correctly and incorrectly
classifiea pix:l1s is not all that good, The values for x§ also show that the
distribution of correctly and inrorrectly classified pixels is nowhere near
optimum, iut X¥ shows that they are closer to being optimally distributed than
randomly ditributed, The values for x§ also show that the correctly classified
pixels are closer to being optimally distributed than randomly distributed,

The values for }:§ show that each feature is not randomly classified,
although the categories urban and transportation are highly suspect. In all
cases, the agriculture category is the least randomly classified even though it
is not the most accurately classified or largest category. The values [or }gé
show that the ground truth category transportation is highly suspect of randomly
occurring in places ciassified as other categories. This test was used primarily
to determine if the number of misclassiflied pixels for a particular category
were distributed or proportional to the population of the other ground truth
categories. The values of x;‘i indicate that the number of correctly and incor-
rectly classified pixels for each category are not randomly distributed, but
again the urban anv transportation categories are suspect.

13
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The values for X{ and %e show that the contingency table distribution
does not indicate independence of the ground truth and classification results, but
a 45 percent "correlation' is nothing to be proud of either., Hence, it appears
that the classification performance was rather dismal for this test site. Although
Table 8 indicates that MLMCM had the best performance, the chi-squared value
is still too large when measured against the best possible performance of all the
techniques.

There may be several reasons why the performance of the techniques is
lower than expected, The first is that the best season may have not been chosen
for those techniques that used only one set of data. Secondly, the test site is
rather small (33386 pixels) as test sites go. The observation was made that
the majority of classification errors ocenrred at the houndary of two or more
different features and that the homogeneous areas were classified consistently
accurately., Hence, if the test site had been expanded, it is expected that the
misclassification would increase linearly and correct classification would
i: crease proportionally to the area. Also hetter choices of training areas
would probably be available., Expanding the site size would also provide a means
of checking the stability of the statistics caleulated for the 333806 pixel test site,

The discussion of these evaluation criteria and resulls provides a means
of establishing a statistical hase for determining the performance of various
classification techniques on different types of data sets and for various remate
sensing discipline applications. However, these criteria provide relatively little
information concerning the goodness of a CM. The tabular resulis provide
information only on how many of each category, whereas a map also provides
this information as well as where this information is located. The next section
addresses modification of the contingency table to provide information on the
spatial complexity of the test site, on where misclassification errors occur, and
on how well the CM agree with the GTM,

V. PROPOSED STATISTICAL TESTS FOR EVALUATING
CM AND/OR GTM

Although the previous tests contain relatively little information on the
goodness of maps produced by various classification techniques, the tests can
be adapted to provide some measure of map goodness. One possible clue as to
what approach should be taken fo adapt these tests ig that CM with identical
inventory and classification accuracies can appear quite different visually,

14




Thus, for two such CM, the best choice would appear to be to select the map
whose homogeneous areas and boundaries ceincide best with the GTM homogeneous
areas and boundaries. A proposed quantitative approach to making this selection
is to produce an 8 by 8 contingency matrix to replace each individual element in
the contingency table of GTM versus CM, The modsl used to provide numbers

for the contingency matrix in the contingeney table is as follows,

Let xij be the reference sample on the CM and yij he the reference
sample on the GTM at scan 1 and column j. Let X 1 i and x, j-1 be two
-1, ,i-
test samples adjacent to the reference sample on the CM at scans and columns
i-1,j and i,j-1, respectively, and let Yiodis and Yi io1 be the corresponding
test samples on the GTM. ] ']

Several comparisons can be made between the reference and test samples
on either the GTM or CM and between corresponding samples on the GTM and
CM. Tor example, a vertical (horizontal) boundary would be indicated on the

CM if pixel x, . belongs to a different class than pixel x, . . (x. . .). The i
1] i,j-1 'Vi-L,j

same is true for the GTM if x is replaced by y. A homogeneous pixel area

occurs when x. ., x. ., and x, . belong to the same class on the CM.
1,j i-1, i,j-1

The same is also true for the GTM if x is replaced by y. A double boundary
occars when the reference sample disagrees with both test samples on either

the CM or GTM. Comparisons also have to be made between the GTM and CM
to determine how many agreements there are concerning the three corresponding
pixels. In constructing the § by 8 matrix, the upper half will contain entries ;
when the reference samples belong to the same class on tlve GTM and CM, the
lower half will contain entries when the reference samples disagree on the GTM ;
and CM, the left half of the matrix will contain entries when either or both of
the test samples agree on the GTM and CM, and the right half of the matrix will
contain entries when either oxr both of the test samples disagree on the GTM and
CM. A pictorial description of the 8 by 8 contingency matrix is shown in the
Fipure and an explanation of the colunn and row labeling, as well as the enirty
values follows,

The row or GTM label definitions are:

1.1 — The reference samples agree on GTM and CM, There is no feature change
in either the scan or cclumn direction (homogeneous pixel area).

1.2 — The reference samples agree on GTM and CM. There is a feature change
in the scan divection only ( vertical boundary).




GTM/CM L1 1.2 1.3 1.4 2,1 2.2 2.3 2,4

5

1.1 4 2 2 1 ¢ 1 1 2

1.2 2 3,2 1 21 1 0,1 2 1,2 Reference

Samples

1.3 2 1 3,2 2,1 1 2 0,1 1,2 Agreo

1.4 i 2,1 2,1 3,2,1 2 1,2 1,2 0,1,2

2,1 0 1,0 1,0 2,1,0 3 2,3 2,3 i,2,3

2.2 1,0 1,0 2,1,0 | 2,1,0 2,3 2,3 1,2,3 | 1,2,8 Reference
r Samples

2.3 1,0 2,1,0 1,0 2,1,0 2,3 1,2,3 2,3 1,2,3 Disugree

2.4 2,1,0 | 23,0 | 2,1,0 | 2,10 1,2,8 | 1,2,3 | 1,2,8 1,2,3 J

Test Semples Tast gmnples
Apree Disagree

Figure. 8 by 8 contingency matrix.

1. 3 — The reference samples agree on the GTM and CM, There is a feature
change in the column direction only (horizontal boundary).

1.4 — The reference samples agree on the GTM and CM. There is a feature
change in the scan and column directions (double boundary).

The row definitions of 2.1, 2.2, 2,3, and 2, 4 are identical to the above,
except that the reference samples on the GTM and CM disagree. The column or
CM labels 1.1, 1.2, 1.3, 1.4 are identical to those previously defined, but 2.1,
2.2, 2.3, 2,4 refer to test sample disagreements. The entry values in the
matrix range from zero to three. The left half of the matrix contains the number
of agreements on the GTM and CM conceining the three pixel locations, and the
right half contains the mumber of disagreements. For example, every time a
1. 1 condition is encountered on the GTM and CM, all three pixels are in agree—
ment and a three is added to the sum (which is initially zero for all elements)
contained in matrix €lement 1.1, 1.1. Notice that 1.1, 2.1 and 2.1, 1.1 are
impossible situations and always contain zero. In the case where 1.4,1,4 is
encountered, there can he 3, 2, or 1 agreements which are added to the sum in
matrix element 3.4, 1. 4 and there cin be 0, 1, or 2 disagreements, respectively,
which are added to the sum of matrix element 1.4, 2, 4.
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To construct the contingency table using the 8 by 8 coantingency matrix, it
is necessary to use only half of the 8 by 8 matrix for each table element., Thus,
for the diagonal elements of the table, only the upper half of the matrix is used
because the bottom half will he all zeros. Tor the off-diagonal elements of the
table, only the lower half of the matrix is used because the top half will be all
zeros. Hence, each element in the contingency table is replaced by a 4 by 8
contingency matrix., Notice that the original values of the single element con~
tingency table can be obtained by adding the right half of the 4 by 8 matrix to the
left half for cach table entry, computing the sum of all of the elements of the
resulting 4 by 4 matrix, and dividing by three. Therefore, the contingency matrix
not only contains the same information as the contingency table, but it also con-
tains a considerable amount of information related to the structure of the CM.

There are several types of map structure information that can be
obtained from the 4 by 8 contingency matrices, By adding the right half of the
4 by 8 matrix to the left half and dividing all of the elements of the resulting
4 by 4 matrix by three, the 4 by 4 matrix will contain the number of homogeneous
pixels, vertical houndaries, horizontal boundaries, and double boundariés on the
diagonal elements for correctly classified pixels. The off-disgonal elements of
the matrix contain the number of errors where feature changes occurred on the
ZM, but did not oceur on the GTM or vice versa. Previous work done on
identifying the major source of classification errors has indicated that the
majority of misclassification occurs at a houndary hetween two or more
ditfferent features. The matrix will help narrow down what type of boundaries
produce the most errors. By not adding the right half to the lelt half of the 4 by
8 matrix, it is possible to determine for those elements having only two possible
values, the number of events having each value. This is not possible with the
matrix elements that can have three values.

By comparing a GTM with itsell, the contingency table will contain only
diagonal elements and these diagonal elements will contain 4 by 4 matrices
(which ave the upper left quarter of the original 8 by 8 matrices) that are them~
selves diagonal. These 4 by 4 diagonal matrices provide a means of determining
the spatial complexity of each feature in terms of the number of observed homo-
geneous pixels and various types of pixel boundavies, By adding all of the 4 by 4
diagonal matrices, a general measure of spatial complexity can be obtained for
the entire GTM independent of feature. These measures are the expected dis-
tributions that can be used in various y? tests for comparing the CM (observed
distributions) with the GTM to determine how well the spatial complexities
agree. Thus, the comparing of spatial complexilies provide a means of selecting
the hest CM from several maps that have similar inventory and classification
accuracies. Comparisons can also be made between the various CM as well ag
comparing a CM with itself, if that type of information is desired,
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Table 10 shows the contingency matrix for comparing the GTM with
itself. Tor the urban category, which containg 276 pixels, there were 66 urban
pixels (23.91 percent of the urban pixels) that had an urban pixel directly above
it (previous scan, same column) and an urban pixel directly to the left of it
(same scan, previous column). There were also 29 urban pixels (10,5 percent)
that had an urban pixel direcily above it and no urban pixel directly to the left
(vertical boundary), 23 urban pixels (8. 33 percent) that had an urban pixel
directly to the left of it and no urban pixel directly above (horizontal boundary),
and 158 urban pixels (57,24 percent) that had no urban pixels directly above or
to the left (double boundary). In describing the features on the GTM, it could
be said that the »+han feature is 23. 9 percent homogeneous, transportation is
4 percent horr ,eneous, agriculfure is 77, 5 percent homogeneous, fovest is
73.1 perce - aomogeneous, and water is 18, 3 percent homogeneous., There is
a corres .ndence between the homogeneity of a feature and the feature clasgifi-~
cation accuracy in that the more homogeneous features appear to he more
accurately classified,

TABLE 10. GTM/GTM CONTINGENCY MATRIX FOR EACH FEATURE

GTA u t it f w
Cutepory
GTR 1,1 1,2 1.2 L4121 L2 1.3 1.4|1.1 1,2 1.3 1.4|1.1 1.2 1.3 1.441,1 1.2 1.3 L 4| Percent

GG 23,491
29 16,50

23 Bedd

1 &8 57.24

34 4,08

1 18,00
1 14,38
5 a7 63,52

&
L 1

74| 28 77,81
9 73 1, 16
2 7,22
4 89 5,10
1

60 84 73.07
23 38 11.07
17 906 8.1%

15 93 7.69

124 18,26
1 &6 27,39
I 19 17,62

Z &0 346, 81

w

[l I el B R e P B I [ W~ SRy P U Ry UPRp
RN R R L L
e o RN I Ry P U T NP O e
[+
[

Table 11 shows the contingency matrix for all of the GTM features
combined.
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TABLE 11, GTM/GTM CONTINGENCY MATRIX TOR ALL FEATURES

GTM All Features
, Category
GTM 1.1 1.2 1.3 1.4 Percent
1.1 2 37 30 71,07
1.2 37 78 11,31
1.3 27 51 B. 23
1.4 31 27 9,36

The table indicates that the entire map is 71, 1 percen. homogeneous,
which corresponds very closely with the classification accuracies presented in
Tables 2 through G, Thus, it appears that the homogeneity percentage for the
GTM could be used as o good estimate of expected minimum classification
accuracy. Table 11 also indicates that it may be worthwhile to consider using
spatial information in the classifier because 91 percent of the pixels belong to
the same feature as the previous pixel in the same scan or same column,

Table 12 shows the contingency matrix of MLCM/GTM for each feature.
The diagonal and row percentages for correct classification are obtained by
ratioing the diagonal elements and row sums of the diagonal matrices in Table
12 with the elements in Table 10, TFor forest, the diagonal percentages show
that for 64, 2 percent of the time, the reference pixel was corrected classified
when the previous pixel in the same scan and same column were also correctly
clagsified as forest. For the case where the reference pixel and the previous
pixel in the same column were correcily classified as forest, but the previous
pixel was categorized as belonging o another feature, the success was only
16.8 percent. In the case of a horizontal houndary for forest, the success in
correci classification was only 13. 5 percent, and for the case of a double
houndary for forest the success was only 11.4 percent, This situation seems
to be typical for large homogenceous areas, indicating that the interior pixels
tend to be more correcily classified than the transition or boundary pixels
befween two or more features. I the constraint is removed that the previous
pixels in the same scan and same column on the CM have to agree with the class
configuration of the corresponding pixels on the GT'M, then the row percentages
show that for forest and when there is no feature change in the previous pixels
on the GTM, the reference pixel on the CM is correctly classified 86, 2 percent
of the time.

The situation appears to be different for highly linear features such as
transportation/communication (t). In this case, the diagonal and row percent-
ages are higher when a feature change is present in the previous pixels. This
is probably due to high data contrast between roadways and power line right of
ways versus forested areas,
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It also appears that the effect of banding can be observed by examining
the diagonal and row percentages change for the 1,2 and 1. 8 cases. If the class
configuration is preserved on the CM and G'I'M (diagonal percent), the classi~
fication accuracy is higher for 1.2 (vertical boundary). However, if the class
configuration is ignored on the CM, the clagsification accuracy is higher for
1.3 (horizontal boundary on GTM). Both situations are supported by the fact
that banding is observed as a horizontal phenomenon produced by data changes
in the vertical direction.

Table 13 is 2 summary of the information in Table 12 for all features.
The diagonal and row percentages were obtained by ratioing the diagonal
elements and row sums of Table 13 with the elements of Table 11. The total
diagonal percentage was obtained by ratioing the sum of the diagonal elements
ir rable 13 with the sum of the diagonal elements in Table 1i. The diagonal
and row percentages indicate essentially the same results as previcusly
menti~ned. However, it is interesting to compare three types of classification
accuracy based upon different constraints, For MLCM Tahle 2 shows that if
the total number of pixels for each feature on the CM (regardless of where they
oceur) are compared with the total number of pixels for each feature on the .
GTM, then the inventory accuracy is 81,94 percent. If the constraint is added
that the CM features pixels are correct if they agree with the GTM feature
pixels at the same location, then the classification accuracy is 71.67 percent.
If a constraint is added that feature changes on CM and GTM have to agree
together with the correctly classified pixels, then a measure of the map
accuracy is 45,77 percent as indicated by the total diagonal percentage in
Tabie 13.

TABLE 13. MLCM/GTM CONTINGENCY MATRIX FAR ALL FEATURES

MLCM All Features .
Diagonal Row
GTM 1.1 1,2 1.3 1.4 Percentages Percentages
1.1 13938 2439 1610 1069 5B8. 73 80, 30
1.2 818 (60 180 317 17,46 582,27
1.3 779 227 380 278 14, 81 G0. 48
1.4 463 307 159 304 9,72 39,43
Total Diagonal Percentage 45,77
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