58,295 research outputs found
Tabular Parsing
This is a tutorial on tabular parsing, on the basis of tabulation of
nondeterministic push-down automata. Discussed are Earley's algorithm, the
Cocke-Kasami-Younger algorithm, tabular LR parsing, the construction of parse
trees, and further issues.Comment: 21 pages, 14 figure
Automorphisms of real Lie algebras of dimension five or less
The Lie algebra version of the Krull-Schmidt Theorem is formulated and proved. This leads to a method for constructing the automorphisms of a direct sum of Lie algebras from the automorphisms of its indecomposable components. For finite-dimensional Lie algebras, there is a well-known algorithm for finding such components, so the theorem considerably simplifies the problem of classifying the automorphism groups. We illustrate this by classifying the automorphisms of all indecomposable real Lie algebras of dimension five or less. Our results are presented very concisely, in tabular form
Smart Computer Security Audit: Reinforcement Learning with a Deep Neural Network Approximator
A significant challenge in modern computer security is the growing skill gap as intruder capabilities increase, making it necessary to begin automating elements of penetration testing so analysts can contend with the growing number of cyber threats. In this paper, we attempt to assist human analysts by automating a single host penetration attack. To do so, a smart agent performs different attack sequences to find vulnerabilities in a target system. As it does so, it accumulates knowledge, learns new attack sequences and improves its own internal penetration testing logic. As a result, this agent (AgentPen for simplicity) is able to successfully penetrate hosts it has never interacted with before. A computer security administrator using this tool would receive a comprehensive, automated sequence of actions leading to a security breach, highlighting potential vulnerabilities, and reducing the amount of menial tasks a typical penetration tester would need to execute. To achieve autonomy, we apply an unsupervised machine learning algorithm, Q-learning, with an approximator that incorporates a deep neural network architecture. The security audit itself is modelled as a Markov Decision Process in order to test a number of decisionmaking strategies and compare their convergence to optimality. A series of experimental results is presented to show how this approach can be effectively used to automate penetration testing using a scalable, i.e. not exhaustive, and adaptive approach
- …
