494 research outputs found

    Fast systematic encoding of multiplicity codes

    Get PDF
    We present quasi-linear time systematic encoding algorithms for multiplicity codes. The algorithms have their origins in the fast multivariate interpolation and evaluation algorithms of van der Hoeven and Schost (2013), which we generalise to address certain Hermite-type interpolation and evaluation problems. By providing fast encoding algorithms for multiplicity codes, we remove an obstruction on the road to the practical application of the private information retrieval protocol of Augot, Levy-dit-Vehel and Shikfa (2014)

    Efficient Systematic Encoding of Non-binary VT Codes

    Full text link
    Varshamov-Tenengolts (VT) codes are a class of codes which can correct a single deletion or insertion with a linear-time decoder. This paper addresses the problem of efficient encoding of non-binary VT codes, defined over an alphabet of size q>2q >2. We propose a simple linear-time encoding method to systematically map binary message sequences onto VT codewords. The method provides a new lower bound on the size of qq-ary VT codes of length nn.Comment: This paper will appear in the proceedings of ISIT 201

    Lemma for Linear Feedback Shift Registers and DFTs Applied to Affine Variety Codes

    Full text link
    In this paper, we establish a lemma in algebraic coding theory that frequently appears in the encoding and decoding of, e.g., Reed-Solomon codes, algebraic geometry codes, and affine variety codes. Our lemma corresponds to the non-systematic encoding of affine variety codes, and can be stated by giving a canonical linear map as the composition of an extension through linear feedback shift registers from a Grobner basis and a generalized inverse discrete Fourier transform. We clarify that our lemma yields the error-value estimation in the fast erasure-and-error decoding of a class of dual affine variety codes. Moreover, we show that systematic encoding corresponds to a special case of erasure-only decoding. The lemma enables us to reduce the computational complexity of error-evaluation from O(n^3) using Gaussian elimination to O(qn^2) with some mild conditions on n and q, where n is the code length and q is the finite-field size.Comment: 37 pages, 1 column, 10 figures, 2 tables, resubmitted to IEEE Transactions on Information Theory on Jan. 8, 201

    A Low Complexity Algorithm and Architecture for Systematic Encoding of Hermitian Codes

    Full text link
    We present an algorithm for systematic encoding of Hermitian codes. For a Hermitian code defined over GF(q^2), the proposed algorithm achieves a run time complexity of O(q^2) and is suitable for VLSI implementation. The encoder architecture uses as main blocks q varying-rate Reed-Solomon encoders and achieves a space complexity of O(q^2) in terms of finite field multipliers and memory elements.Comment: 5 Pages, Accepted in IEEE International Symposium on Information Theory ISIT 200

    Information Sets of Multiplicity Codes

    Get PDF
    We here provide a method for systematic encoding of the Multiplicity codes introduced by Kopparty, Saraf and Yekhanin in 2011. The construction is built on an idea of Kop-party. We properly define information sets for these codes and give detailed proofs of the validity of Kopparty's construction, that use generating functions. We also give a complexity estimate of the associated encoding algorithm.Comment: International Symposium on Information Theory, Jun 2015, Hong-Kong, China. IEE

    Fast Erasure-and-Error Decoding and Systematic Encoding of a Class of Affine Variety Codes

    Full text link
    In this paper, a lemma in algebraic coding theory is established, which is frequently appeared in the encoding and decoding for algebraic codes such as Reed-Solomon codes and algebraic geometry codes. This lemma states that two vector spaces, one corresponds to information symbols and the other is indexed by the support of Grobner basis, are canonically isomorphic, and moreover, the isomorphism is given by the extension through linear feedback shift registers from Grobner basis and discrete Fourier transforms. Next, the lemma is applied to fast unified system of encoding and decoding erasures and errors in a certain class of affine variety codes.Comment: 6 pages, 2 columns, presented at The 34th Symposium on Information Theory and Its Applications (SITA2011

    Flexible and Low-Complexity Encoding and Decoding of Systematic Polar Codes

    Full text link
    In this work, we present hardware and software implementations of flexible polar systematic encoders and decoders. The proposed implementations operate on polar codes of any length less than a maximum and of any rate. We describe the low-complexity, highly parallel, and flexible systematic-encoding algorithm that we use and prove its correctness. Our hardware implementation results show that the overhead of adding code rate and length flexibility is little, and the impact on operation latency minor compared to code-specific versions. Finally, the flexible software encoder and decoder implementations are also shown to be able to maintain high throughput and low latency.Comment: Submitted to IEEE Transactions on Communications, 201
    • …
    corecore