1,361,541 research outputs found
System-level optimization of baseband filters for communication applications
In this paper, a design approach for the high-level synthesis of programmable continuous-time baseband filters able to achieve optimum trade-off among dynamic range, distortion behavior, mismatch tolerance and power area consumptions is presented. The proposed approach relies on building programming circuit elements as arrays of switchable unit cells and defines the synthesis as a constrained optimization problem with both continuous and discrete variables, this last representing the number of enabled cells of the arrays at each configuration. The cost function under optimization is, then, defined as a weighted combination of performance indices which are estimated from macromodels of the circuit elements. The methodology has been implemented in MATLAB™ and C++, and covers all the classical approximation techniques for filters, most common circuit topologies (namely, ladder simulation and cascaded biquad realizations) and both transconductance-C (Gm-C) and active-RC implementation approaches. The proposed synthesis strategy is illustrated with a programmable equal-ripple ladder Gm-C filter for a multi-band power-line communication modem.P.R.O.F.I.T. FIT-070000-2001-84
Achieving robust and high-fidelity quantum control via spectral phase optimization
Achieving high-fidelity control of quantum systems is of fundamental
importance in physics, chemistry and quantum information sciences. However, the
successful implementation of a high-fidelity quantum control scheme also
requires robustness against control field fluctuations. Here, we demonstrate a
robust optimization method for control of quantum systems by optimizing the
spectral phase of an ultrafast laser pulse, which is accomplished in the
framework of frequency domain quantum optimal control theory. By incorporating
a filtering function of frequency into the optimization algorithm, our
numerical simulations in an abstract two-level quantum system as well as in a
three-level atomic rubidium show that the optimization procedure can be
enforced to search optimal solutions while achieving remarkable robustness
against the control field fluctuations, providing an efficient approach to
optimize the spectral phase of the ultrafast laser pulse to achieve a desired
final quantum state of the system.Comment: 17 pages, 8 figure
Recent developments in multilevel optimization
Recent developments in multilevel optimization are briefly reviewed. The general nature of the multilevel design task, the use of approximations to develop and solve the analysis design task, the structure of the formal multidiscipline optimization problem, a simple cantilevered beam which demonstrates the concepts of multilevel design and the basic mathematical details of the optimization task and the system level are among the topics discussed
- …
