15,419 research outputs found

    Logic controlled solid state switchgear

    Get PDF
    Logic controlled solid state circuit breakers and power transfer switches have been designed and built to demonstrate their use for 270 V dc power systems. This switchgear provides remote operation, automatic current level, and operates several orders of magnitude faster with much greater accuracy of response than conventional switchgear

    Contribution of two diagnosis tools to support interface situation during production launch

    Get PDF
    Organised by: Cranfield UniversityFirms are urged to constantly introduce new products. Hence, the New Product Development process should be mastered, especially its final phase, the production launch. This paper addresses the critical issue of the information exchange during production launch. Two diagnosis tools considering production launch as a key interface are presented. They permit to examine the information flows, to highlight their weaknesses and hence to find solutions for further improvements. This paper also presents the results of a case study where the diagnosis tools were implemented during a switchgear development project.Mori Seiki – The Machine Tool Compan

    Autonomous power system brassboard

    Get PDF
    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the brassboard hardware and intelligent controlling software, fault circuits have been developed and integrated as part of the brassboard. A description of these fault circuits and their function is included. The brassboard has become an extremely useful test facility, promoting artificial intelligence (AI) applications for power distribution systems. However, there are elements of the brassboard which could be enhanced, thus improving system performance. Modifications and enhancements to improve the brassboard's operation are discussed

    The Recognition of Fires Originating from Photovoltaic (PV) Solar Systems

    Get PDF
    There has been an observable increase in the fitting of photovoltaic (PV) solar panels on the roofs of buildings in the UK over the last decade. The origin of some fires in domestic and commercial properties has been attributed to PV systems. This thesis examines the ability of fire examiners to recognise and record details of fires believed to have originated from PV systems, as well as investigating the effect of internal heating in direct current (DC) isolators to the point at which they fail. National fire data was examined along with the methods for collecting and collating these data. This clarified that national fire data cannot identify the specifics of electrical fires. Validity of these data was then tested by identifying the confidence and competence in the recognition of the origin of fire, (especially when associated with PV systems), of some fire staff responsible for collecting fire data. This suggests that some fire scenes examiners are not confident in their own ability to recognise fires originating from PV systems. Evidence for fires occurring in PV systems in Kent between 2009 and 2014 was then examined, including a cold case forensic review of the evidence. This provided an indication that a potential common point of failure, which may lead to fire originating from a PV system, was to be found within the DC section of the PV circuits and probably within the DC isolator switch itself. Experimentation revealed that internal heating of a terminal connection can lead to changes of the phase of the insulating material, causing failure of structural integrity and therefore allowing an arc to be established. Observable post fire indicators associated with this mechanism of failure have been identified as well as hydrocarbons evolved from pyrolysis of isolator insulating material. Finally, areas for further experimental research and training of fire staff are suggested as well as the modification of recording mechanisms and building regulations

    Autonomous power expert system

    Get PDF
    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning

    Providing decision support for the condition-based maintenance of circuit breakers through data mining of trip coil current signatures

    Get PDF
    The focus of this paper centers on the condition assessment of 11kV-33kV distribution circuit breakers from the analysis of their trip coil current signatures captured using an innovative condition monitoring technology developed by others. Using available expert knowledge in conjunction with a structured process of data mining, thresholds associated with features representing each stage of a circuit breaker's operation may be defined and used to characterize varying states of circuit breaker condition. Knowledge and understanding of satisfactory and unsatisfactory breaker condition can be gained and made explicit from the analysis of captured trip signature data and subsequently used to form the basis of condition assessment and diagnostic rules implemented in a decision support system, used to inform condition-based decisions affecting circuit breaker maintenance. This paper proposes a data mining method for the analysis of condition monitoring data, and demonstrates this method in its discovery of useful knowledge from trip coil data captured from a population of SP Power System's in-service circuit breakers. This knowledge then forms the basis of a decision support system for the condition assessment of these circuit breakers during routine trip testing

    Investigation of Partial Discharge in Solid Dielectric under DC Voltage

    No full text
    A partial discharge, or PD, is defined as an electrical discharge that is localized within only a part of the insulation between two separated conductors. Recent research on PD mainly focuses on the study of PD characteristics under AC voltage. Compared with DC, PD under AC is more serious and can be easily detected in terms of PD number. As the results of these concentrated research, the understanding of PD under AC condition has been significantly improved and features extracted from PD measurements have been used to diagnose the insulation condition of many power apparatus. Recently, rapid development in HVDC transmission and power grids connection, and widely applied DC cable and gas-insulated switchgear because of their benefit in long distance usage lead to an increasing concern about PD under DC. However, available study for the condition is little and related research is therefore necessary and essential for understanding the lifetime and reliability of apparatus. <br/
    corecore