240,599 research outputs found
Enhancing Cooperative Coevolution for Large Scale Optimization by Adaptively Constructing Surrogate Models
It has been shown that cooperative coevolution (CC) can effectively deal with
large scale optimization problems (LSOPs) through a divide-and-conquer
strategy. However, its performance is severely restricted by the current
context-vector-based sub-solution evaluation method since this method needs to
access the original high dimensional simulation model when evaluating each
sub-solution and thus requires many computation resources. To alleviate this
issue, this study proposes an adaptive surrogate model assisted CC framework.
This framework adaptively constructs surrogate models for different
sub-problems by fully considering their characteristics. For the single
dimensional sub-problems obtained through decomposition, accurate enough
surrogate models can be obtained and used to find out the optimal solutions of
the corresponding sub-problems directly. As for the nonseparable sub-problems,
the surrogate models are employed to evaluate the corresponding sub-solutions,
and the original simulation model is only adopted to reevaluate some good
sub-solutions selected by surrogate models. By these means, the computation
cost could be greatly reduced without significantly sacrificing evaluation
quality. Empirical studies on IEEE CEC 2010 benchmark functions show that the
concrete algorithm based on this framework is able to find much better
solutions than the conventional CC algorithms and a non-CC algorithm even with
much fewer computation resources.Comment: arXiv admin note: text overlap with arXiv:1802.0974
MATSuMoTo: The MATLAB Surrogate Model Toolbox For Computationally Expensive Black-Box Global Optimization Problems
MATSuMoTo is the MATLAB Surrogate Model Toolbox for computationally
expensive, black-box, global optimization problems that may have continuous,
mixed-integer, or pure integer variables. Due to the black-box nature of the
objective function, derivatives are not available. Hence, surrogate models are
used as computationally cheap approximations of the expensive objective
function in order to guide the search for improved solutions. Due to the
computational expense of doing a single function evaluation, the goal is to
find optimal solutions within very few expensive evaluations. The multimodality
of the expensive black-box function requires an algorithm that is able to
search locally as well as globally. MATSuMoTo is able to address these
challenges. MATSuMoTo offers various choices for surrogate models and surrogate
model mixtures, initial experimental design strategies, and sampling
strategies. MATSuMoTo is able to do several function evaluations in parallel by
exploiting MATLAB's Parallel Computing Toolbox.Comment: 13 pages, 7 figure
The SUMO toolbox: a tool for automatic regression modeling and active learning
Many complex, real world phenomena are difficult to study directly using controlled experiments. Instead, the use of computer simulations has become commonplace as a feasible alternative. Due to the computational cost of these high fidelity simulations, surrogate models are often employed as a drop-in replacement for the original simulator, in order to reduce evaluation times. In this context, neural networks, kernel methods, and other modeling techniques have become indispensable. Surrogate models have proven to be very useful for tasks such as optimization, design space exploration, visualization, prototyping and sensitivity analysis. We present a fully automated machine learning tool for generating accurate surrogate models, using active learning techniques to minimize the number of simulations and to maximize efficiency
A Derivative-Free Trust-Region Algorithm for Reliability-Based Optimization
In this note, we present a derivative-free trust-region (TR) algorithm for
reliability based optimization (RBO) problems. The proposed algorithm consists
of solving a set of subproblems, in which simple surrogate models of the
reliability constraints are constructed and used in solving the subproblems.
Taking advantage of the special structure of the RBO problems, we employ a
sample reweighting method to evaluate the failure probabilities, which
constructs the surrogate for the reliability constraints by performing only a
single full reliability evaluation in each iteration. With numerical
experiments, we illustrate that the proposed algorithm is competitive against
existing methods
Fast prediction and evaluation of gravitational waveforms using surrogate models
[Abridged] We propose a solution to the problem of quickly and accurately
predicting gravitational waveforms within any given physical model. The method
is relevant for both real-time applications and in more traditional scenarios
where the generation of waveforms using standard methods can be prohibitively
expensive. Our approach is based on three offline steps resulting in an
accurate reduced-order model that can be used as a surrogate for the
true/fiducial waveform family. First, a set of m parameter values is determined
using a greedy algorithm from which a reduced basis representation is
constructed. Second, these m parameters induce the selection of m time values
for interpolating a waveform time series using an empirical interpolant. Third,
a fit in the parameter dimension is performed for the waveform's value at each
of these m times. The cost of predicting L waveform time samples for a generic
parameter choice is of order m L + m c_f online operations where c_f denotes
the fitting function operation count and, typically, m << L. We generate
accurate surrogate models for Effective One Body (EOB) waveforms of
non-spinning binary black hole coalescences with durations as long as 10^5 M,
mass ratios from 1 to 10, and for multiple harmonic modes. We find that these
surrogates are three orders of magnitude faster to evaluate as compared to the
cost of generating EOB waveforms in standard ways. Surrogate model building for
other waveform models follow the same steps and have the same low online
scaling cost. For expensive numerical simulations of binary black hole
coalescences we thus anticipate large speedups in generating new waveforms with
a surrogate. As waveform generation is one of the dominant costs in parameter
estimation algorithms and parameter space exploration, surrogate models offer a
new and practical way to dramatically accelerate such studies without impacting
accuracy.Comment: 20 pages, 17 figures, uses revtex 4.1. Version 2 includes new
numerical experiments for longer waveform durations, larger regions of
parameter space and multi-mode model
Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates
The optimization of algorithm (hyper-)parameters is crucial for achieving
peak performance across a wide range of domains, ranging from deep neural
networks to solvers for hard combinatorial problems. The resulting algorithm
configuration (AC) problem has attracted much attention from the machine
learning community. However, the proper evaluation of new AC procedures is
hindered by two key hurdles. First, AC benchmarks are hard to set up. Second
and even more significantly, they are computationally expensive: a single run
of an AC procedure involves many costly runs of the target algorithm whose
performance is to be optimized in a given AC benchmark scenario. One common
workaround is to optimize cheap-to-evaluate artificial benchmark functions
(e.g., Branin) instead of actual algorithms; however, these have different
properties than realistic AC problems. Here, we propose an alternative
benchmarking approach that is similarly cheap to evaluate but much closer to
the original AC problem: replacing expensive benchmarks by surrogate benchmarks
constructed from AC benchmarks. These surrogate benchmarks approximate the
response surface corresponding to true target algorithm performance using a
regression model, and the original and surrogate benchmark share the same
(hyper-)parameter space. In our experiments, we construct and evaluate
surrogate benchmarks for hyperparameter optimization as well as for AC problems
that involve performance optimization of solvers for hard combinatorial
problems, drawing training data from the runs of existing AC procedures. We
show that our surrogate benchmarks capture overall important characteristics of
the AC scenarios, such as high- and low-performing regions, from which they
were derived, while being much easier to use and orders of magnitude cheaper to
evaluate
Strategies for balancing exploration and exploitation in electromagnetic optimisation
The paper focuses on the advantages and drawbacks of different strategies which may be used to assist kriging surrogate modelling with the purpose of selecting multiple design vectors for evaluation when stepping forward in optimisation routines. The combined criteria include the efficiency of finding the global optimum but also the quality of the approximation of the shape of the objective function; the latter may be used to make judgements about the robustness of the optimised design
KL-based Control of the Learning Schedule for Surrogate Black-Box Optimization
This paper investigates the control of an ML component within the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box
optimization. The known CMA-ES weakness is its sample complexity, the number of
evaluations of the objective function needed to approximate the global optimum.
This weakness is commonly addressed through surrogate optimization, learning an
estimate of the objective function a.k.a. surrogate model, and replacing most
evaluations of the true objective function with the (inexpensive) evaluation of
the surrogate model. This paper presents a principled control of the learning
schedule (when to relearn the surrogate model), based on the Kullback-Leibler
divergence of the current search distribution and the training distribution of
the former surrogate model. The experimental validation of the proposed
approach shows significant performance gains on a comprehensive set of
ill-conditioned benchmark problems, compared to the best state of the art
including the quasi-Newton high-precision BFGS method
- …
