1,498,314 research outputs found

    Stochastic analysis of surface roughness

    Full text link
    For the characterization of surface height profiles we present a new stochastic approach which is based on the theory of Markov processes. With this analysis we achieve a characterization of the complexity of the surface roughness by means of a Fokker-Planck or Langevin equation, providing the complete stochastic information of multiscale joint probabilities. The method was applied to different road surface profiles which were measured with high resolution. Evidence of Markov properties is shown. Estimations for the parameters of the Fokker-Planck equation are based on pure, parameter free data analysis

    A nonstandard characterization of regular surfaces

    Get PDF
    In the present work we approach the study of surfaces using Nonstandard Analysis, by providing first a nonstandard characterization of a surface. Further, the tangent space to a surface is defined as well.CEOCFCTFEDER/POCT

    Catalysts for electrochemical generation of oxygen

    Get PDF
    Several aspects of the electrolytic evolution of oxygen for use in life support systems are analyzed including kinetic studies of various metal and nonmetal electrode materials, the formation of underpotential films on electrodes, and electrode surface morphology and the use of single crystal metals. In order to investigate the role of surface morphology to electrochemical reactions, a low energy electron diffraction and an Auger electron spectrometer are combined with an electrochemical thin-layer cell allowing initial characterization of the surface, reaction run, and then a comparative surface analysis

    Bulk contribution to magnetotransport properties of low defect-density Bi2_2Te3_3 topological insulator thin films

    Get PDF
    An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2_2Te3_3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2_2Te3_3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two-dimensional in nature.Comment: 12 pages, 5 figure

    Observation of surface states on heavily indium doped SnTe(111), a superconducting topological crystalline insulator

    Get PDF
    The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn1x_{1-x}Inx_{x}Te), and for low indium contents (x=0.04x=0.04) it is known that the topological surface states are preserved. Here we present the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to x0.4x\approx0.4), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist

    CO2 laser waveguiding in proton implanted GaAs

    Get PDF
    Surface layers capable of supporting optical modes at 10.6 microns have been produced in n-type GaAs wafers through 300 keV proton implantation. The dominant mechanism for this effect appears to be free carrier compensation. Characterization of the implanted layers by analysis of infrared reflectivity spectra and synchronous coupling at 10.6 microns produced results in good agreement with elementary models. These results of sample characterization by infrared reflectivity and by CO2 laser waveguiding as implanted are presented and evaluated
    corecore