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Abstract

In the present work we approach the study of surfaces using Nonstandard Anal-
ysis. To begin with we will give a nonstandard characterization of a surface.
Later the tangent space to a surface will be also defined.
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1 Introduction

In order to understand the present work the reader must have some knowledge
of Nonstandard Analysis. Specifically, we need to fix some terminology and
some facts about continuity and differentiability of functions.

We will begin by presenting a contained exposition of the theory. For further
details the reader is referred to [6] or [8].

We will work on a proper extension ∗Rn of the Euclidean space Rn. Given
two vectors x, y ∈ ∗Rn, we say that x is infinitesimal if |x| < ε for all standard
ε ∈ σR+ and we write x ≈ 0; x is finite if |x| < ε for some ε ∈ σR+; x is infinite
if it is not finite and x is infinitely close to y, x ≈ y, if x− y is infinitesimal.

If y is standard and x ≈ y, we say that y is the standard part of x, that x is
near-standard and we write y = st(x).

The set of finite (resp. near-standard) points of ∗Rn is denoted by fin(∗Rn)
(resp. ns(∗Rn)).

Given a subset U ⊆ Rn, we say that a ∈ ns(∗U) is there exists st(a) and
st(a) ∈ σU .

The monad of x, µ(x) is the set of points in ∗Rn infinitely close to x.
In the following, U will be an open subset of Rn.

Definition 1 Let f : ∗U → ∗Rm be an internal function. We say that f is
S-continuous if for all a ∈ σU and x ∈ ∗U with x ≈ a, holds f(x) ≈ f(a). If
the sentence it is true for all a ∈ ∗U , f is called SU-continuous.
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For standard functions, S-continuity is equivalent to continuity and SU-
continuity to uniform continuity.

Definition 2 Let f : ∗U → ∗Rm be an internal function. We say that f is
S-differentiable if f(ns(∗U)) ⊆ ns(∗Rm) and, for each a ∈ σU , there exists a
finite linear operator Dfa ∈ ∗L(Rn,Rm) such that, for all x ∈ ∗U , there exists
some η ≈ 0 with

(1.1) x ≈ a ⇒ f(x)− f(a) = Dfa(x− a) + |x− a|η.

The function f is called SU-differentiable if the previous condition is still true
for all a ∈ ns(∗U).

Theorem 1 [8] A standard function f : U → Rm is differentiable (resp. of
class C1) if and only if ∗f is S-differentiable (resp. SU-differentiable).

One final result needed: a standard subset U ⊆ Rn is open iff for all x ∈ σU
and y ∈ ∗Rn, if x ≈ y then y ∈ ∗U .

2 Regular Surfaces

In this section we shall present the main result of our work. To start, let us
recall the following definition.

Definition 3 Let S ⊆ R3 be a nonempty set. We say that S is a regular
surface if for each P ∈ S, there exist an open neighbourhood V of P , an open
set U in R2 and a function x : U → V ∩ S satisfying the following conditions:

1. x is a homeomorphism;

2. x is of class C1;

3. for each q ∈ U , the differential Dxq : R2 → R3 is 1− 1.

The function x is called a parametrization of S in P .

As usual, we denote xu(q) :=
∂x

∂u
(q) and xv(q) :=

∂x

∂v
(q).

Definition 4 If x : U → V ∩ S is a parametrization in P = x(p), we define the
unit normal vector at each point Q = x(q) ∈ x(U) by the rule

N(Q) :=
xu × xv

|xu × xv| (q).

In [5] is presented a nonstandard characterization of submanifolds in Eu-
clidean spaces. Using that result we will give a characterization of regular
surfaces using a field of unit normal vectors on the set.
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Theorem 2 [5] A standard subset Mm ⊆ Rn with n ∈ σN is a C1-submanifold
iff there exists a standard tangent plane map T : M → G(m, n) into the set of
affine m-planes such that, for every near-standard point P ∈ ns(∗M),

1. P ∈ T (P );

2. the ortogonal projection πP : ∗M → T (P ) is an infinitesimal bijection;

3. if ∗M 3 Q ≈ P then |Q−πP (Q)|
|Q−P | ≈ 0, i.e., the angle between the secant line

through P and Q and the plane T (P ) is infinitesimal.

We present now our result:

Theorem 3 Let S ⊆ R3 be a nonempty set. Then S is a regular surface iff for
each P ∈ ns(∗S), there exist a standard neighbourhood ∗V of P and a standard
continuous function N : V ∩ S → R3 such that:

1. for all Q ∈ V ∩ S, |N(Q)| = 1;

2. for all Q,R ∈ ∗V ∩ ∗S with Q 6= R,

R ≈ Q ⇒ N(Q) · Q−R

|Q−R| ≈ 0;

3. If T (P ) is the plane containing P and orthogonal to N(P ), then

µ(P ) ∩ T (P ) ⊆ πP (µ(P ) ∩ ∗S)

where πP : ∗R3 → T (P ) is the orthogonal projection.

Proof. We begin by assuming that S is a regular surface and let us fix P ∈
ns(∗S). Choose a standard neighbourhood V of st(P ) and a parametrization
x : U → V ∩S in P . Define N : V ∩S → R3 as the unit normal vector function
at x(U). It is easy to see that conditions 1 and 2 are satisfied. About condition
3, observe that T (P ) is the tangent plane to the surface at P , and by Theorem
2, condition 2, the proof follows.

To prove the reverse, we will prove that there exists a standard function
T : S → G(2, 3), (where G(2, 3) denotes the set of planes in R3) such that, for
each P ∈ ns(∗S), we have:

1. P ∈ T (P );

2. the orthogonal projection πP : ∗S → T (P ) is an infinitesimal bijection in
the sense that:

(a) if R, R′ ∈ ∗S with R ≈ R′ ≈ P and πP (R) = πP (R′), then R = R′;
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(b) if Q ∈ T (P ) and Q ≈ P , then there exists R ∈ ∗S with R ≈ P and
πp(R) = Q;

3. If ∗S 3 Q ≈ P then |Q−πP (Q)|
|Q−P | ≈ 0.

Since it is a local problem, we will define a standard function T : V ∩ S →
G(2, 3), where ∗V is a neighbourhood of P . First, choose a continuous function
u1 : V ∩S → R3 such that u1(Q) ·N(Q) = 0 and |u1(Q)| = 1, for all Q ∈ V ∩S.
Define u2 : V ∩ S → R3 by u2(Q) = u1(Q)×N(Q) and let

T : V ∩ S → G(2, 3)
Q 7→ {Q + λ1u1(Q) + λ2u2(Q) | λ1, λ2 ∈ R}

Clearly, P ∈ T (P ).
Suppose now that there exist R,R′ ∈ ∗S with R ≈ R′ ≈ P , πP (R) = πP (R′)

but R 6= R′. Thus

P + ((R− P ) · u1(P )) · u1(P ) + ((R− P ) · u2(P )) · u2(P ) =

(2.1) = P + ((R′ − P ) · u1(P )).u1(P ) + ((R′ − P ) · u2(P )) · u2(P ) ⇔

⇔
{

(R−R′) · u1(P ) = 0
(R−R′) · u2(P ) = 0 .

So we may conclude that

(2.2)
R−R′

|R−R′| = ±N(P ).

Multiplying both members by N(R), we get

(2.3) N(R) · R−R′

|R−R′| = ±N(R) ·N(P ).

Moreover, the first member of this equation is infinitesimal and the second
member is infinitely close to ±1 (a contradiction). So the function is 1− 1. For
the second part, it follows from condition 3.

Finally, the angle between the plane T (P ) and the straight line PQ is in-
finitesimal because

(2.4) N(P ) · Q− P

|Q− P | ≈ 0

and N(P ) is orthogonal to T (P ).

Let us note that it is also true that

(2.5) πP (µ(P ) ∩ ∗S) ⊆ µ(P ) ∩ T (P )
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because if Q ∈ ∗S with Q ≈ P , the continuity of πP implies that

(2.6) πP (Q) ≈ πP (P ) = P ∈ T (P ).

We will now present a new definition of tangent space to a surface. We think
that this definition is more intuitive than the classical one and, in a certain way,
it is the geometric idea of the tangent space that we keep.

Definition 5 Let P ∈ S be a point and V ∈ R3 a vector. We say that V is
tangent to the surface at P if there exist Q ∈ ∗S with Q ≈ P and k ∈ ∗R such
that k

−−→
PQ ∈ ns(∗R3) and V = st(k

−−→
PQ).

Let x : U → V ∩ S be a parametrization in P and fix Q ∈ ∗S with P ≈ Q.
Since V is open, Q ∈ ∗x(U) and so P = x(p) and Q = x(q), for some p, q ∈ ∗U .
By the continuity of x−1, p ≈ q. Consequently,

(2.7)
−−→
PQ = x(q)− x(p) = Dxp (q − p) + |q − p|η,

for some η ≈ 0. Thus

(2.8) k
−−→
PQ = k|q − p|

(
Dxp

(
q − p

|q − p|
)

+ η

)
.

Observe that, if u ∈ ∗R2 is an unit vector, then Dxp (u) 6≈ 0 (if not, we would
have

(2.9) st(Dxp(u)) = 0 ⇔ Dxp (st(u)) = 0

and st(u) 6= 0, a contradiction). So, if k
−−→
PQ ∈ ns(∗R3), then k|q − p| ∈ fin(∗R)

and so

(2.10) k
−−→
PQ ≈ Dxp (k(q − p)) .

Definition 6 The set of tangent vectors to a surface S at P is called the tan-
gent plane to S at P and denoted by TP S.

Theorem 4 It is true that TP S = Dxp (R2).

Proof. Let V ∈ TP S be a vector. Then

(2.11) V = st(k
−−→
PQ) = Dxp (st(k(q − p))) ,

and therefore V ∈ Dxp (R2).
To prove the reverse, if V = Dxp (u), for some u ∈ R2, let q := p + εu, with

0 < ε ≈ 0.
Then

(2.12) x(q)− x(p) = Dxp (εu) + ε|u|η,
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for some η ≈ 0, which implies that

(2.13)
x(q)− x(p)

ε
≈ Dxp (u).

Define Q = x(q) and k = 1/ε, and therefore V = st
(
k
−−→
PQ

)
.

Theorem 5 Let U be an open subset of Rn, p ∈ U , m > n and x : U → Rm

an injective C1 function. Let {p0, . . . , pn} ⊆ ∗U be a set such that:

1. pi 6= pj for i 6= j and 0 ≤ i, j ≤ n;

2. p0 ≈ . . . ≈ pn ≈ p;

3. the vectors
{

st
(

p1−p0
|p1−p0|

)
, . . . , st

(
pn−p0
|pn−p0|

)}
are linearly independents;

4. the vectors
{

∂x
∂u1

(p), . . . , ∂x
∂un

(p)
}

are also linearly independents.

Define, for 1 ≤ i ≤ n,
vi := x(pi)− x(p0),

Π0 := {x(p0) + λ1v1 + . . . + λnvn | λ1, . . . , λn ∈ ∗R}
and

Π := {x(p) + λ1
∂x

∂u1
(p) + . . . + λn

∂x

∂un
(p) | λ1, . . . , λn ∈ R}.

If a ∈ fin(Π0) then st(a) ∈ Π.

Proof. Let W := 〈v1, . . . , vn〉 ⊆ ∗Rm and k := dim(W ) ≤ n. Assume,
without any loss of generality, that {v1, . . . , vk} is a basis of W , k ≤ n. Let
{b1, . . . , bm−k} be an orthonormal basis of W⊥. For j ∈ {1, . . . ,m− k}, define
the functions fj : ∗U → ∗R by

fj(u) = (x(u)− x(p0)) · bj , u ∈ ∗U.

It is obvious that for each 1 ≤ j ≤ m − k, fj is SU-differentiable. Moreover,
since

(2.14) fj(p0) = fj(p1) = . . . = fj(pn) = 0,

then for each i ∈ {1, . . . , n} and j ∈ {1, . . . , m− k}, there is ηij ≈ 0 such that

(2.15) D(fj)p0(pi − p0) + |pi − p0|ηij = 0 ⇔ Dxp0

(
pi − p0

|pi − p0|
)
· bj ≈ 0.

Taking the standard parts of both members we get

(2.16) Dxp

(
st

pi − p0

|pi − p0|
)
· st(bj) = 0.
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Let st(W ) := {st(v) | v ∈ fin(W )}, then st(W ) is a linear subspace of Rm and
dim(st(W )) = k (cf. [3]). Similarly, st(W⊥) is a linear space and st(W⊥) =
〈st(b1), . . . , st(bm−k)〉. Note that, for i = 1, . . . , n, the vectors st

(
pi−p0
|pi−p0|

)
are

linearly independents and since Dxp is an injective linear operator, the vectors

Dxp

(
st

(
pi−p0
|pi−p0|

))
, for i = 1, . . . n are also linearly independents. Moreover,

from

(2.17) Dxp

(
st

(
pi − p0

|pi − p0|
))

∈ 〈 ∂x

∂u1
(p), . . . ,

∂x

∂un
(p)〉,

it follows that
(2.18)

〈Dxp

(
st

(
p1 − p0

|p1 − p0|
))

, . . . , Dxp

(
st

(
pn − p0

|pn − p0|
))

〉 = 〈 ∂x

∂u1
(p), . . . ,

∂x

∂un
(p)〉.

But

(2.19)
vi

|pi − p0| ≈ Dxp0

(
pi − p0

|pi − p0|
)

which implies

(2.20) st

(
vi

|pi − p0|
)

= Dxp

(
st

(
pi − p0

|pi − p0|
))

,

and so

(2.21)
{

∂x

∂ui
(p) | i ∈ {1, . . . , n}

}
⊆ st(W ).

So we conclude that k = n and {v1, . . . , vn} are linearly independents.
Consequently, if a ∈ fin(Π0), then for all j ∈ {1, . . . ,m− n} we have

(2.22) (a− x(p0)) · bj = 0 ⇒ (st(a)− x(p)) · st(bj) = 0 ⇒ st(a) ∈ Π.
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