80,256 research outputs found

    Molecular model for the self-assembly of the cyclic lipodepsipeptide pseudodesmin A

    Get PDF
    Self-assembly of peptides into supramolecular structures represents an active field of research with potential applications ranging from material science to medicine. Their study typically involves the application of a large toolbox of spectroscopic and imaging techniques. However, quite often, the structural aspects remain underexposed. Besides, molecular modeling of the self-assembly process is usually difficult to handle, since a vast conformational space has to be sampled. Here, we have used an approach that combines short molecular dynamics simulations for peptide dimerization and NMR restraints to build a model of the supramolecular structure from the dimeric units. Experimental NMR data notably provide crucial information about the conformation of the monomeric units, the supramolecular assembly dimensions, and the orientation of the individual peptides within the assembly. This in silico/in vitro mixed approach enables us to define accurate atomistic models of supramolecular structures of the bacterial cyclic lipodepsipeptide pseudodesmin A

    Carbamazepine on a carbamazepine monolayer forms unique 1D supramolecular assemblies

    Get PDF
    High-resolution STM imaging of the structures formed by carbamazepine molecules adsorbed onto a pseudo-ordered carbamazepine monolayer on Au(111) shows the formation of previously unreported 1-dimensional supramolecular assemblies

    Competing Interactions among Supramolecular Structures on Surfaces

    Full text link
    A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associated with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.Comment: 3 pages, 3 eps figure

    Supramolecular Assembly of Ag(I) Centers: Diverse Topologies Directed by Anionic Interactions.

    Get PDF
    Ag(I)-Ag(I) interactions in supramolecular structures have been achieved through the use of structural support from the ligand frames. In structures involving simple ligands like pyridine, strong π-π interaction leads to spatial ordering of the individual [Ag(L)2]+ units. In such structures anions also play a crucial role in dictating the final arrangement of the [Ag(L)2]+ synthons. In order to determine whether the anions can solely dictate the arrangement of the [Ag(L)2]+ synthons in the supramolecular structure, four Ag(I) complexes of 4-pyridylcarbinol (PyOH), namely, [Ag(PyOH)2]X (X = NO3- (1), BF4- (2), CF3SO3- (3), and ClO4- (4)) have been synthesized and structurally characterized. Gradual transformation of the extended structures observed in 1-3 eventually merges into a unique linear alignment of the [Ag(PyOH)2]+ units in 4 along the c axis, a feature that results in strong argentophilic interactions. Complex 4 is sensitive to light and is inherently less stable than the other three analogues. The structural variations in this set of extended assemblies are solely dictated by the anions, since π-π interaction between the substituted pyridine ligands is significantly diminished due to disposition of the -CH2OH substituent at the 4 position and H-bonding throughout the structure

    Selective Adsorption of a Supramolecular Structure on Flat and Stepped Gold Surfaces

    Full text link
    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations.~It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.Comment: Preprint. 24 pages, 5 figure

    A supramolecular radical cation: folding-enhanced electrostatic effect for promoting radical-mediated oxidation.

    Get PDF
    We report a supramolecular strategy to promote radical-mediated Fenton oxidation by the rational design of a folded host-guest complex based on cucurbit[8]uril (CB[8]). In the supramolecular complex between CB[8] and a derivative of 1,4-diketopyrrolo[3,4-c]pyrrole (DPP), the carbonyl groups of CB[8] and the DPP moiety are brought together through the formation of a folded conformation. In this way, the electrostatic effect of the carbonyl groups of CB[8] is fully applied to highly improve the reactivity of the DPP radical cation, which is the key intermediate of Fenton oxidation. As a result, the Fenton oxidation is extraordinarily accelerated by over 100 times. It is anticipated that this strategy could be applied to other radical reactions and enrich the field of supramolecular radical chemistry in radical polymerization, photocatalysis, and organic radical battery and holds potential in supramolecular catalysis and biocatalysis

    Resonant X-ray emission spectroscopy reveals d–d ligand-field states involved in the self-assembly of a square-planar platinum complex

    Get PDF
    Resonant X-ray Emission Spectroscopy (RXES) is used to characterize the ligand field states of the prototypic self-assembled square-planar complex, [Pt(tpy)Cl]Cl (tpy=2,2′:6′,2′′-terpyridine), and determine the effect of weak metal-metal and π-π interactions on their energy. © 2012 the Owner Societies

    Direct Patterning of a Cyclotriveratrylene Derivative for Directed Self-assembly of C60

    Get PDF
    A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials
    corecore