80,256 research outputs found
Molecular model for the self-assembly of the cyclic lipodepsipeptide pseudodesmin A
Self-assembly of peptides into supramolecular structures represents an active field of research with potential applications ranging from material science to medicine. Their study typically involves the application of a large toolbox of spectroscopic and imaging techniques. However, quite often, the structural aspects remain underexposed. Besides, molecular modeling of the self-assembly process is usually difficult to handle, since a vast conformational space has to be sampled. Here, we have used an approach that combines short molecular dynamics simulations for peptide dimerization and NMR restraints to build a model of the supramolecular structure from the dimeric units. Experimental NMR data notably provide crucial information about the conformation of the monomeric units, the supramolecular assembly dimensions, and the orientation of the individual peptides within the assembly. This in silico/in vitro mixed approach enables us to define accurate atomistic models of supramolecular structures of the bacterial cyclic lipodepsipeptide pseudodesmin A
Carbamazepine on a carbamazepine monolayer forms unique 1D supramolecular assemblies
High-resolution STM imaging of the structures formed by carbamazepine molecules adsorbed onto a pseudo-ordered carbamazepine monolayer on Au(111) shows the formation of previously unreported 1-dimensional supramolecular assemblies
Competing Interactions among Supramolecular Structures on Surfaces
A simple model was constructed to describe the polar ordering of
non-centrosymmetric supramolecular aggregates formed by self assembling
triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice
with an Ising-like penalty associated with reversing the orientation of nearest
neighbor dipoles. The choice of the potentials is based on experimental results
and structural features of the supramolecular objects. For films of finite
thickness, we find a periodic structure along an arbitrary direction
perpendicular to the substrate normal, where the repeat unit is composed of two
equal width domains with dipole up and dipole down configuration. When a short
range interaction between the surface and the dipoles is included the balance
between the up and down dipole domains is broken. Our results suggest that due
to surface effects, films of finite thickness have a none zero macroscopic
polarization, and that the polarization per unit volume appears to be a
function of film thickness.Comment: 3 pages, 3 eps figure
Supramolecular Assembly of Ag(I) Centers: Diverse Topologies Directed by Anionic Interactions.
Ag(I)-Ag(I) interactions in supramolecular structures have been achieved through the use of structural support from the ligand frames. In structures involving simple ligands like pyridine, strong π-π interaction leads to spatial ordering of the individual [Ag(L)2]+ units. In such structures anions also play a crucial role in dictating the final arrangement of the [Ag(L)2]+ synthons. In order to determine whether the anions can solely dictate the arrangement of the [Ag(L)2]+ synthons in the supramolecular structure, four Ag(I) complexes of 4-pyridylcarbinol (PyOH), namely, [Ag(PyOH)2]X (X = NO3- (1), BF4- (2), CF3SO3- (3), and ClO4- (4)) have been synthesized and structurally characterized. Gradual transformation of the extended structures observed in 1-3 eventually merges into a unique linear alignment of the [Ag(PyOH)2]+ units in 4 along the c axis, a feature that results in strong argentophilic interactions. Complex 4 is sensitive to light and is inherently less stable than the other three analogues. The structural variations in this set of extended assemblies are solely dictated by the anions, since π-π interaction between the substituted pyridine ligands is significantly diminished due to disposition of the -CH2OH substituent at the 4 position and H-bonding throughout the structure
Selective Adsorption of a Supramolecular Structure on Flat and Stepped Gold Surfaces
Halogenated aromatic molecules assemble on surfaces forming both hydrogen and
halogen bonds. Even though these systems have been intensively studied on flat
metal surfaces, high-index vicinal surfaces remain challenging, as they may
induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone
(2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der
Waals corrected density functional theory. Equilibrium geometries and
corresponding adsorption energies are systematically investigated for various
different adsorption configurations.~It is shown that bridge sites and step
edges are the preferred adsorption sites for single molecules on flat and
stepped surfaces, respectively. The role of van der Waals interactions, halogen
bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ
molecules, revealing that molecular flexibility and intermolecular interactions
stabilize two-dimensional networks on both flat and stepped surfaces. Our
results provide a rationale for experimental observation of molecular carpeting
on high-index vicinal surfaces of transition metals.Comment: Preprint. 24 pages, 5 figure
Recommended from our members
Hydrogen bonded supramolecular elastomers : correlating hydrogen bonding strength with morphology and rheology
A series of six low molecular weight elastomers with hydrogen bonding end-groups have been designed, synthesised and studied. The poly(urethane) based elastomers all contained essentially the same hard block content (ca. 11%) and differ only in the nature of their end-groups. Solution state 1H NMR spectroscopic analysis of model compounds featuring the end-groups demonstrate that they all exhibit very low binding constants, in the range 1.4 to 45.0 M-1 in CDCl3, yet the corresponding elastomers each possess a markedly different nanoscale morphology and rheology in the bulk. We are able to correlate small variations of the binding constant of the end-groups with dramatic changes in the bulk properties of the elastomers. These results provide an important insight into the way in which weak non-covalent interactions can be utilized to afford a range of self-assembled polyurethane based materials that feature different morphologies
A supramolecular radical cation: folding-enhanced electrostatic effect for promoting radical-mediated oxidation.
We report a supramolecular strategy to promote radical-mediated Fenton oxidation by the rational design of a folded host-guest complex based on cucurbit[8]uril (CB[8]). In the supramolecular complex between CB[8] and a derivative of 1,4-diketopyrrolo[3,4-c]pyrrole (DPP), the carbonyl groups of CB[8] and the DPP moiety are brought together through the formation of a folded conformation. In this way, the electrostatic effect of the carbonyl groups of CB[8] is fully applied to highly improve the reactivity of the DPP radical cation, which is the key intermediate of Fenton oxidation. As a result, the Fenton oxidation is extraordinarily accelerated by over 100 times. It is anticipated that this strategy could be applied to other radical reactions and enrich the field of supramolecular radical chemistry in radical polymerization, photocatalysis, and organic radical battery and holds potential in supramolecular catalysis and biocatalysis
Resonant X-ray emission spectroscopy reveals d–d ligand-field states involved in the self-assembly of a square-planar platinum complex
Resonant X-ray Emission Spectroscopy (RXES) is used to characterize the ligand field states of the prototypic self-assembled square-planar complex, [Pt(tpy)Cl]Cl (tpy=2,2′:6′,2′′-terpyridine), and determine the effect of weak metal-metal and π-π interactions on their energy. © 2012 the Owner Societies
Direct Patterning of a Cyclotriveratrylene Derivative for Directed Self-assembly of C60
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials
- …
