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Abstract 
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker 
was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-
containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped 
cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the 
directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted 
in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular 
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recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV 
scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic 
electronic and optoelectronic materials.  

Introduction 
With its unique structure, physical, and electronic properties, C60 (buckminsterfullerene) has been shown to 
possess great potential for the development of organic electrical and optical devices [1–4]. For example, C60 is an 
excellent electrical conductor at the nanoscale, nearly as good as copper metal. C60 is also a good thermal 
conductor and is one of the strongest materials known, being 100 times stronger than steel but one-sixth the 
weight [5–7]. Moreover, the ability of C60 to be a potent electron acceptor has led to its utilization in donor–
chromophore–acceptor based molecular triads that are capable of intramolecular photoinduced electron 
transfer (PET) [8]. While C60 thin films on metal surfaces have been widely studied [3, 9–14], many challenges 
remain for the directed self-assembly of organic optoelectronic materials such as C60 into two-dimensional 
surface structures. Therefore, developing methods to pattern and immobilize organic electronic or 
optoelectronic materials with nanometer-scale control will provide a simple, robust, and flexible approach for 
the preparation of predetermined two-dimensional organic materials. By controlling the spatial distribution of 
organic molecules on a surface by directed molecular binding, these materials will potentially allow for the 
development of new nano-optical, nanoelectronic, and/or nanoelectrochemical systems (NEMS) [3, 8–12]. 
 
One way to pattern and immobilize organic electronic or optoelectronic materials with nanometer-scale control 
is to utilize a bottom-up, layer-by-layer approach based on host–guest chemistry [3]. Host–guest chemistry 
involves complementary binding between two different molecules that can involve electrostatic, hydrogen 
bonding, π–π stacking interactions, inductive and dispersion forces, as well as hydrophobic or solvatophobic 
effects [15]. Over the past decade, host–guest chemistry involving synthetic receptor molecules has received 
increasing interest partly due to the ever-advancing ability to synthesize complex molecular scaffolds to serve as 
host structures. One such receptor, cyclotriveratrylene (CTV) [16–18], has been extensively employed in host–
guest chemistry as a supramolecular scaffold [19–21]. Enabled by its rigid bowl-shaped structure, CTV has been 
shown to act as a host molecule for a variety of small molecules including neutral or ionic polyhedral C60 and o-
carborane derivatives [22, 23]. In 1994, Atwood et al [24] showed that the bowl-shaped crown conformer of CTV 
forms inclusion complexes with C60 in the ratio of (C60)1.5(CTV)(toluene)0.5 referred to as a 'ball-and-socket' 
structure. Zhang et al [25–28] utilized this ball-and-socket structure to prepare C60 self-assembled monolayers 
(SAMs) on gold utilizing CTV, however the CTV was derivatized on its perimeter resulting in the concave shape of 
the CTV molecule facing toward the gold surface, thus irreversibly trapping C60 against the surface and isolating 
it from neighboring CTV guests. This orientation of CTV prohibits its ability to function as a template for a layer-
by-layer approach to building organic electronic or optoelectronic materials. 
 
Herein we describe a robust and reliable method to produce predesigned, spatially controlled, high-density 
microarrays of C60. We have designed and synthesized an apex-modified CTV derivative providing a surface-
bound CTV template with its bowl-shaped cavity directed away from the surface. By utilizing a layer-by-layer 
approach and dip-pen nanolithography (DPN), which provides a flexible nanolithographic method capable of 
positioning molecules on a substrate with 10 nm resolution [29, 30], predesigned, spatially controlled 
microarrays of this modified CTV derivative were prepared on gold surfaces. The molecular recognition 
capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be 
directly patterned on surfaces and through host–guest interactions provide a template for the development of 
organic electronic or optoelectronic materials. 
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1. Materials and methods 
1.1. Materials 
All solvents and reagents used were purchased from Sigma-Aldrich (Milwaukee, WI) and were used as received 
without further purification.  
 

1.2. Synthesis of 10,15-dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]-
cyclononen-O-[5-(1,2-dithiolan-3-yl)pentanoyl]-5-oxime (2a/b) 
CTV ketone and CTV oxime were prepared by a modification of the previously published procedure [31]. For the 
synthesis of the crown and saddle CTV-oxime–lipoic-acid derivatives, lipoic acid (283 mg, 1.37 mmol), 
hydroxybenzotriazole (HOBT) (200 mg, 1.48 mmol), N, N'-dicyclohexylcarbodiimide (DCC) (330 mg, 1.60 mmol), 
and 3.0 ml of dry tetrahydrofuran (THF) were mixed in a round bottom flask and allowed to stir at room 
temperature for 1 h. A mixture of crown and saddle conformers of CTV oxime 1a/b (545 mg, 1.14 mmol) in 
2.7 ml of dry THF was then added to the round bottom flask drop-wise. The reaction was allowed to stir for ~ 
24 h and was monitored via TLC using ethyl acetate/dichloromethane (EA/DCM, 1/9) as the eluent. Upon 
consumption of the starting material, the reaction was filtered over celite to remove the insoluble urea and 
washed with ~ 30 ml of DCM. The solvent was then removed under reduced pressure. The crude mixture was 
purified using flash chromatography with an RS-40 cartridge and an eluent gradient of EA/hexane (1/2 to 2/1, 
v/v). The crown/saddle (2a/b) fractions were combined and upon removal of the solvent a light brown solid was 
recovered (434 mg, yield: 57%). This product was characterized by 1H NMR, 13C NMR, and IR. 1H NMR (300 MHz, 
CDCl3, TMS as internal standard) δ7.33 (s, 1H), 6.94 (s, 1H), 6.93 (s, 1H), 6.91 (s, 1H), 6.83 (s, 1H), 6.80 (s, 1H), 
6.78 (s, 1H), 6.68 (s, 1H), 6.65 (s, 1H), 6.64 (s, 1H), 6.58 (s, 1H), 6.54 (s, 1H).  
 

1.3. Preparation of gold substrates 
Silicon oxide substrates with 500 nm thermally evaporated oxide layers were purchased from WaferNet, Inc. 
(CA). Thin films of Cr and Au with thicknesses of 10 nm and 30 nm, respectively, were evaporated onto pre-cut, 
piranha (3:1 = H2SO4:H2O2) cleaned silicon pieces using an Edwards Auto 306 system. (Caution! Piranha solution 
should be handled carefully as it may cause serious burns.)  
 

1.4. Fabrication of CTV microarrays 
A NanoInk, Inc. Nscriptor™ was used to prepare DPN arrays under ambient conditions with temperatures 
ranging from 20 to 22 °C and humidity levels within the enclosed chamber between 25 and 35%. V-shaped, 
silicon nitride contact-mode tips (NanoInk, Inc.) with a spring constant of 0.5  N m − 1 were used for DPN 
patterning. A 10 mM solution of 2a/b was prepared in acetonitrile containing 1% polysorbate 20 for wettability. 
For DPN patterning, atomic force microscopy (AFM) tips were first dipped into inkwells filled with 2a/b. The 
stationary diffusion constants were calculated based on the model developed by Jang et al [32] prior to each 
patterning process. Dot-shaped patterns were made by holding the tip stationary in contact with the surface. 
The samples with DPN arrays were allowed to stand at room temperature for ~ 10 min and rinsed with 
acetonitrile then ethanol and dried under a stream of nitrogen.  
 

1.5. Modification of the DPN-patterned templates 
Substrates with DPN generated patterns were incubated in a 1 mM solution of octadecanethiol (ODT) in ethanol 
for ~ 30 min to block any exposed gold surface from further unwanted contaminations or modifications. The 
samples were then rinsed with ethanol and dried under a stream of nitrogen. Regions coated with 2a/b were 
then functionalized using a 1 mM solution of C60 in toluene with deposition times ranging from 20 min to 1 h. 
Functionalized samples were rinsed with toluene and dried under a stream of nitrogen.  
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1.6. Imaging and surface characterization 
Fabricated microarrays were characterized by AFM. A NanoInk, Inc. Nscriptor™ was employed to acquire 
topography, phase and frictional force images. A v-shaped, silicon nitride contact-mode cantilever tip (model 
MSCT-AUNM-10 purchased from Veeco, Inc.) with a spring constant of 0.05  N m − 1 was used for lateral force 
microscopy (LFM) images while a beam-shaped, silicon tapping-mode tip with a spring constant of 40  N m − 1, 
from Pacific Nanotechnology, was used for Tapping-Mode AFM (TMAFM) imaging. All the AFM images were 
acquired with resolutions of 512 pixels × 512 pixels. Self-assembled monolayers for matrix assisted laser 
desorption ionization mass spectrometry (SAMDI-TOF MS) spectra were obtained using a 4800 MALDI-TOF/TOF 
(Applied Biosystems, Farmingham, MA) with a 335 nm Nd:YAG laser as a desorption/ionization source using a 
matrix of 2,4,6-trihydroxyacetophenone, 25  mg ml − 1 in acetonitrile. All spectra were acquired with 20 kV 
accelerating voltage using a positive reflector mode. The extraction delay was 450 ns, 1200 laser shots were 
applied, and the entire surface of the circle was sampled. Each spectrum was calibrated using the EG3–EG3 
disulfide background as an internal standard.  
 

2. Results and discussion 
We hypothesized that derivatizing the apex of the CTV bowl would provide a supramolecular scaffold with the 
concave bowl receptor pointing away from the surface, enabling CTV to function as a surface-bound host 
molecule. To accomplish this, CTV was oxidized to the monoketone and converted to the oxime in high yield as 
an equilibrium mixture of the crown 1a and the saddle 1b conformers (figure 1) [31]. The CTV oxime was 
coupled to (±)-α-lipoic acid affording a mixture of the coupled crown (2a) and saddle (2b) conformers in 52% 
yield (figure 1). The resulting CTV–lipoic-acid derivatives (2a/b) contain a dithiolane-terminated linker for 
coordination to gold, thus enabling the bowl of CTV to face away from the surface.  
 

 

Figure 1. Synthetic scheme for the synthesis of the apex-modified dithiol CTV oxime (1). 
 
With the successful design and synthesis of an apex-modified CTV supramolecular scaffold head group with a 
dithiolane tail, microarrays of 2a/b were prepared via DPN by direct patterning using a NanoInk, Inc. Nscriptor™ 
system [29, 30]. DPN is a particularly important nanolithographic method for patterning molecular inks since 
DPN is capable of positioning molecules on a substrate with 10 nm resolution in predesigned, spatially 
controlled arrays [29]. As previously reported, the addition of 1% polysorbate 20 to a 10 mM solution of 2a/b in 
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acetonitrile enhanced the diffusion of 2a/b during the DPN process by making the solvent more wettable [33]. 
DPN generated patterns of 2a/b were prepared at 20 °C with humidity levels between 25 and 35% [34]. To 
assess the adsorption of the 2a/b molecular ink, surface topography changes were measured by atomic force 
microscopy (lateral force microscopy (LFM) and tapping-mode atomic force microscopy (TMAFM)) after curing in 
air at room temperature for ~ 10 min, followed by rinsing with acetonitrile and ethanol and drying under a 
stream of nitrogen. 
 
Typical AFM images of DPN generated 2a/b patterns are shown in figure 2. Surface-bound 2a/b, which is more 
hydrophilic than gold, is observed as the light contrast areas in the TMAFM image (figure 2(a)) and a darker 
contrast in the LFM image (figure 2(b)). The height of DPN generated patterns of 2a/b, measured from randomly 
placed height profiles using TMAFM revealed a height of 1.2 ± 0.3 nm every 1.5 µm with a width of 0.5 µm 
(figure 2(c)). The calculated height of a 2a/b monolayer is 1.5 nm, consistent with the experimentally observed 
height values obtained for 2a/b, indicating the formation of a 2a/b SAM. Gold substrates containing 2a/b SAMs 
were immersed in a 1 mM solution of ODT in ethanol for ~ 30 min, rinsed with ethanol, and dried under a 
stream of nitrogen. A TMAFM topography image after passivation with ODT was recorded and the 
corresponding height profiles are shown in figure 3(a). TMAFM images demonstrate that the heights of 2a/b 
SAM and the surrounding ODT backfilled resist layers are similar due to the nearly identical heights of their 
SAMs (about 1.5 nm versus 1.8 nm, respectively) [35]. However, microarrays of 2a/b backfilled with ODT can be 
clearly differentiated by LFM due to the greater frictional force represented as the darker contrast in 
comparison to the ODT resist layer between the AFM tip and the 2a/b SAM (figure 3(b)). The height profile 
(figure 3(c)) confirmed the relatively constant height of the ODT backfilled surface.  
 

 

Figure 2. AFM generated images of 2a/b dot patterns patterned onto the bare gold surface. (a) TMAMF image 
showing height increase of 2a/b dots patterned onto the bare gold surface via DPN. (b) LFM images of 2a/b 
patterned on a base gold substrate utilizing DPN. (c) Step height profile from AFM of the sample represented in 
image a. 
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Figure 3. AFM generated images of 2a/b dot patterns after backfilling the bare gold surface with ODT. 
(a) TMAFM and (b) LFM images of 2a/b dot patterns. (c) Step height profile from AFM of the sample 
represented in image (a). 
 
The molecular recognition capabilities of the DPN generated CTV-template microarrays toward C60 were also 
examined. Arrays of 2a/b–ODT were immersed in a 1 mM solution of C60 in toluene for ~ 40 min and after 
extensive rinsing with toluene were dried with nitrogen and characterized via TMAFM. A typical TMAFM image 
showing C60 attached to the CTV template is presented in figure 4(a). The binding interaction of the 2a/b–ODT 
SAMs with C60 is consistent with the observed TMAFM contrast (figure 4(a)) and a clearly visible contrast in the 
LFM image (figure 4(b)). These data are in good agreement with the hydrophobicity of C60, which is somewhat 
more hydrophilic than ODT. C60 was observed bound to individual dots with little or no binding to the resist ODT 
monolayer. Additional confirmation for C60 binding to DPN generated 2a/b templates was obtained from SAMDI-
TOF mass spectroscopy. Mrksich and co-workers have shown that SAMDI-TOF MS is an excellent tool to directly 
detect organic molecules, such as synthetic intermediates, at surfaces [36]. Therefore, SAMDI-TOF MS spectra 
were collected on DPN generated SAMS of 2a/b before and after exposure to C60 (supplementary material 
figures S1 and S2 available at stacks.iop.org/0957-4484/22/i=27/a=275611/mmedia). For SAMs of 2a/b, a 
significant (74%) m/z peak at 462.27 was observed, which we assign to the cleavage product of 2a/b at the N–O 
bond (figure 1). No parent peak was observed for 2a/b and no peaks at larger masses were detected, indicating 
that the lipoic acid tail of 2a/b was lost in the laser desorption process. Exposure of DPN generated SAMS of 
2a/b to C60 resulted in the observation of an m/z peak at 720.05 in the SAMDI-TOF mass spectrum indicating the 
presence of C60 bound to the 2a/b monolayer. These data, taken together, provide proof-of-concept that 
supramolecular CTV scaffolds can be directly patterned on surfaces and retain their ability to bind host 
molecules such as C60.  
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Figure 4. AFM images of the samples after C60 deposition. (a) TMAFM image showing that a height increase of ~ 
1.0 nm is observed where the CTV-disulfide ink was patterned, but not on the surrounding ODT surface. (b) The 
frictional contrast between CTV-C60 is apparent relative to the backfilled ODT surface in the LFM image. 
(c) Cross-sectional step height profile from tapping-mode AFM shows the periodic height increase of ~ 1.0 nm on 
the sample. 
 
Given that the diameter of C60 is ~ 1 nm, a height increase for a SAM of 2a/b after the addition of C60 is expected 
if C60 binds to the CTV macrocycle in a ball-and-socket fashion as observed by Atwood et al [24] in the solid 
state. AFM height profiles of the 2a/b-C60 SAM after the addition of the ODT resist were found to be 1.0 ± 
0.3 nm (figure 4(c)). Since 2a/b and ODT have approximately the same height, the 1 nm height increase is 
evidence of C60 binding through π–π interactions (figure 5) similar to the binding mode reported for the solid 
state [24]. Previously we had shown that apex-modified CTV derivatives interconvert between two different 
conformers, crown 1a and saddle 1b [31]. The interconversion equilibrium between the two conformers was 
shown to be solvent dependent with the crown conformer being favored in non-polar solvents [37]. Given the 
nearly complete coverage of the CTV-surface-bound template, the equilibrium between the crown conformer 2a 
and the saddle conformer 2b must be shifted toward 2a (figure 1) enabling a ball-and-socket interaction 
between the host CTV molecules and the C60 guest [37]. Therefore, the apex-bound lipoic-acid–CTV molecule 
(2a) resides on the surface with its bowl-shaped cavity directed away from the surface. The proposed 
conformation of the CTV bowl is consistent with other cyclophane SAMs, such as calix[n]arenes (n = 4, 6, 8) [26, 
38].  
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Figure 5. Proposed C60 binding to the apex-modified, surface-bound CTV. 

3. Conclusion 
We have shown that an apex-modified CTV supramolecular scaffold can be patterned into pre-defined 
microarrays via DPN. Through host–guest interactions, these microarrays have been shown to form bottom-up, 
layer-by-layer complexes with C60 with potential toward advancing nanoelectronics and optoelectronics. Having 
the ability to directly pattern molecular host active surfaces via DPN opens the door to preparing a wide range of 
host–guest materials with reproducible, homogeneous features with high edge resolution, which will facilitate 
the fabrication of microcircuitry and optical electronics based on host–guest chemistry. 
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Figure S1: Low mass SAMDI-TOF MS of CTV-MHA on gold substrate 
 

 
Figure S2: SAMDI-TOF MS of C60 on the gold surface 
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