711,703 research outputs found
Super-resolution of 3D Magnetic Resonance Images by Random Shifting and Convolutional Neural Networks
Enhancing resolution is a permanent goal in magnetic resonance (MR) imaging, in order to keep improving diagnostic capability and registration methods. Super-resolution (SR) techniques are applied at the postprocessing stage, and their use and development have progressively increased during the last years. In particular, example-based methods have been mostly proposed in recent state-of-the-art works. In this paper, a combination of a deep-learning SR system and a random shifting technique to improve the quality of MR images is proposed, implemented and tested. The model was compared to four competitors: cubic spline interpolation, non-local means upsampling, low-rank total variation and a three-dimensional convolutional neural network trained with patches of HR brain images (SRCNN3D). The newly proposed method showed better results in Peak Signal-to-Noise Ratio, Structural Similarity index, and Bhattacharyya coefficient. Computation times were at the
same level as those of these up-to-date methods. When applied to downsampled MR structural T1 images, the new method also yielded better qualitative results, both in the restored images and in the images of residuals.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network
In many domestic and military applications, aerial vehicle detection and
super-resolutionalgorithms are frequently developed and applied independently.
However, aerial vehicle detection on super-resolved images remains a
challenging task due to the lack of discriminative information in the
super-resolved images. To address this problem, we propose a Joint
Super-Resolution and Vehicle DetectionNetwork (Joint-SRVDNet) that tries to
generate discriminative, high-resolution images of vehicles fromlow-resolution
aerial images. First, aerial images are up-scaled by a factor of 4x using a
Multi-scaleGenerative Adversarial Network (MsGAN), which has multiple
intermediate outputs with increasingresolutions. Second, a detector is trained
on super-resolved images that are upscaled by factor 4x usingMsGAN architecture
and finally, the detection loss is minimized jointly with the super-resolution
loss toencourage the target detector to be sensitive to the subsequent
super-resolution training. The network jointlylearns hierarchical and
discriminative features of targets and produces optimal super-resolution
results. Weperform both quantitative and qualitative evaluation of our proposed
network on VEDAI, xView and DOTAdatasets. The experimental results show that
our proposed framework achieves better visual quality than thestate-of-the-art
methods for aerial super-resolution with 4x up-scaling factor and improves the
accuracy ofaerial vehicle detection
- …
