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Abstract—Enhancing resolution is a permanent goal in mag-
netic resonance (MR) imaging, in order to keep improving
diagnostic capability and registration methods. Super-resolution
(SR) techniques are applied at the postprocessing stage, and
their use and development have progressively increased during
the last years. In particular, example-based methods have been
mostly proposed in recent state-of-the-art works. In this paper,
a combination of a deep-learning SR system and a random
shifting technique to improve the quality of MR images is
proposed, implemented and tested. The model was compared
to four competitors: cubic spline interpolation, non-local means
upsampling, low-rank total variation and a three-dimensional
convolutional neural network trained with patches of HR brain
images (SRCNN3D). The newly proposed method showed better
results in Peak Signal-to-Noise Ratio, Structural Similarity index,
and Bhattacharrya coefficient. Computation times were at the
same level as those of these up-to-date methods. When applied
to downsampled MR structural T1 images, the new method also
yielded better qualitative results, both in the restored images and
in the images of residuals.

Index Terms—Magnetic Resonance Imaging, super resolution,
convolutional neural networks, supervised learning

I. INTRODUCTION

Estimation of high-resolution (HR) images from low-
resolution (LR) images is a classical problem in image pro-
cessing. This process, called super-resolution (SR), consists
in using post-processing techniques to improve the image
quality [1]. In the medical image processing subfield, despite
the advances in acquisition technology, such as Computerized
Tomography (CT), Positron Emission Tomography (PET),
Magnetic Resonance Imaging (MRI) or combined modalities
(e.g. SPECT/CT), obtaining an image at a desired resolution
is not easy due to the limitations of physical imaging systems
as well as quality factors such as noise, which is inherent in
medical imaging, or blurring.

In the MRI typical clinical setting, data (both low- and high-
resolution images of different types) is usually acquired with
different voxel sizes for different MRI modalities. Moreover,
in-plane resolution is usually higher than out-plane (i.e in
the slice direction) one, producing non-isotropic voxel sizes

(i.e. rectangular voxels). The final resolution of the acquired
images is normally limited by hardware, signal to noise ratio
(SNR), limited acquisition time or movements of the patient.
Therefore, in some cases, the acquired images have to be
upsampled to decrease the voxel size and obtain higher-
resolution images, which will be post-processed or analyzed.

Traditional techniques [2], [3], such as linear interpola-
tion or spline-based methods, have been extensively used to
increase the resolution of data. However, such techniques
estimate new points assuming the homogeneity of regions,
hence these interpolated images are typically blurred. Among
different techniques [4], [5], example-based methods have
been mostly proposed in recent state of the art works, either
by exploiting internal similarities of the same image [6], [7],
or learning from external training datasets [8]–[11].

The super-resolution convolutional neural network (SR-
CNN) [12] is one of the most recent external example-based
methods, where a deep CNN is proposed in order to learn the
mapping function between low- and high-resolution images
instead of learning dictionaries or manifolds to model the high-
resolution space.

CNNs were inspired by the animal visual cortex and they
are one of the first truly successful deep learning architectures,
which have shown outstanding performance in processing im-
ages and videos. Nowadays, with the help of GPU-accelerated
computing techniques, CNNs have been successfully applied
to object recognition (e.g. handwriting, face, behavior...), rec-
ommender systems or image classification. Hundreds of papers
have been published in the last years providing different types
of deep neural networks in some selected areas [13], [14],
particularly in medical image analysis [15], [16], where CNNs
have become increasingly popular and widely applied.

In this work, a three dimensional convolutional neural net-
work together with a random shifting technique are proposed
to increase the resolution of MR images. The proposed method
has been successfully applied to different brain MRI datasets
and compared with state of the art SR algorithms. Results have
shown the superior performance of the proposed method, even
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in qualitative aspects.
The rest of paper is organized as follows. In the next section

II, the proposed combination of a deep learning SR system
and a random shifting technique is presented and both models
(CNN and random shifting) explained. Comparative results are
reported in the section III, where competitors and datasets are
also described. Finally, the conclusions and future works are
presented in section IV.

II. THE MODEL

In this section a combination of a deep-learning SR system
and a random shifting technique to improve the quality of MR
images is proposed. In Subsection II-A the SRCNN method
employed for our model is described, and in Subsection II-B
the shifting procedure to estimate the final HR image given a
LR one is designed.

A. Convolutional neural network

The standard CNN based SR reconstruction is carried out
in two steps:
• First, given a LR image X, a spline interpolation I is

performed in order to obtain a HR image Z = I(X).
• Second, a convolutional neural network is applied to

restore the image.
The CNN is composed by three convolutional layers and

a Rectified Linear Unit (ReLU) layer is applied in the first
two filter responses. If we call g1, g2, g3 for each of these
operations, the net computes a HR image

g = g3 ◦ g2 ◦ g1 (1)

and the restoration is computed minimizing the Euclidean loss

f̃ = argming

∑
||X− g(Z)||2 (2)

The first convolutional layer applies 64 filters of size 9 ×
9 × 9, 32 of size 1 × 1 × 1 in the second, and one filter
of size 5 × 5 × 5 in the last layer. Overlapping patches are
extracted from a set of HR reference images in order to have
enough samples to train the network, and feature maps are
computed. For each patch, a down-sampling and up-sampling
is applied and a relationship is established to learn an end-to-
end mapping between LR and HR images.

For the proposed model described in the next section, we
use this net as a base, which is called SRCNN3D and is
implemented in [17].

B. Random shifting model

Given an LR image X, the SRCNN model learns an
approximation f̃ (X) of the underlying HR image f (X):

f (X) = f̃ (X) + ε̃ (X) (3)

where ε̃ (X) is the approximation error. Shifted versions LR
image can be considered as inputs to the SRCNN, where a ∈
[0,K)× [0,K)× [0,K) is a shift vector and K is the window
size (in voxels) of the first layer of the SRCNN. Therefore a

different approximation f̄a (X) of the underlying HR image
f is obtained for each shift vector a:

f̄a (X) = f̃ (X	 a)⊕ λa (4)

ε̄a (X) = ε̃ (X	 a)⊕ λa (5)

f (X) =
(
f̃ (X	 a) + ε̃ (X	 a)

)
⊕ λa =

(
f̃ (X	 a)⊕ λa

)
+ (ε̃ (X	 a)⊕ λa) =

f̄a (X) + ε̄a (X) (6)

where 	 and ⊕ stand for the image left shift and right
shift operators, respectively, and λ is the super-resolution
zoom factor. If a is regarded as a random variable, then a
consensus approximation can be obtained as the expectation of
f̄a (X) with respect to a, Ea

[
f̄a (X)

]
. An estimation of such

expectation can be readily obtained by averaging M individual
approximations:

f̂ (X) =
1

M

M∑
m=1

f̄am
(X) (7)

where the aj are uniformly drawn at random from [0,K) ×
[0,K)× [0,K). From (7) and the strong law of large numbers,
it follows that f̂ (X) converges almost surely to Ea

[
f̄a (X)

]
as the number of samples M tends to infinity:

f̂ (X)→ Ea

[
f̄a (X)

]
when M →∞ (8)

Now, it is reasonable to think that Ea

[
f̄a (X)

]
is a better

approximation to f (X) than most of the individual approx-
imations f̄a (X), since Ea

[
f̄a (X)

]
does not depend on a

particular shift a of the LR image, while the individual
approximations do. Hence we propose to use f̂ (X) as an
approximator to f (X). In practice the aj are constrained to be
integer vectors, so that fractional shifts are not necessary, since
fractional shifts would pose a difficult problem themselves.

The proposed super-resolution algorithm is as follows:
1) Given M , compute the following set of vectors:

SM = {am}m∈{1,...,M} (9)

am = (a
(m)
1 , a

(m)
2 , a

(m)
3 ) ∈ R3 (10)

where ai is a random value drawn from the uniform dis-
tribution on the set {0, ...,K−1}, for each i ∈ {1, 2, 3}.

2) For an input LR image X, compute M circularly image
shifts:

{X	 am, am ∈ SM} (11)

3) Apply the CNN to obtain a set of HR images:

{f̃(X	 am), am ∈ SM} (12)
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Fig. 1. Scheme of the proposed algorithm.

4) Recompose the images considering the super-resolution
zoom factor {f̄am(X), am ∈ SM} and compute the final
restored HR image f̄(X) following Eq. (7).

A schematic depiction of the operation of our algorithm is
shown in Fig. 1.

III. EXPERIMENTAL RESULTS

The experiments we have carried out and the obtained
results are reported in this section. The LR image generation,
software and hardware that we have used, and the selected
performance metrics for comparison between methods are
specified in Subsection III-A. Then, the MR image datasets
are described in III-B. The set of tuned parameters are in Sub-
section III-C and the descriptions of the competing algorithms
in Subsection III-D. At the end, in Subsection III-E we report
the results of the performance tests.

A. Methods

Input LR images for each method were obtained from the
original HR images following this procedure: first, HR images
were cropped in relation to the zoom factor to be applied.
Then, a three-dimensional Gaussian filter was applied, with
standard deviation equal to 1. Finally, cubic interpolation was
used to obtain the LR image, through the imresize3 function
of Matlab (default parameters).

The SRCNN3D method was used as the superresolution
convolutional neural network since it has demonstrated a
considerable effectiveness compared with other state-of-art
methods. We employed a pre-trained model which is available
in the project. The CNN was trained over 470000 iterations,
using momentum of 0.9, learning rate of 0.0001 and batch

size of 256. Stochastic gradient descent was used for model
optimization.

The comparison experiments have been carried out on a
64-bit Personal Computer with an eight-core Intel i7 3.60GHz
CPU, 32 GB RAM and standard hardware, and using Matlab
R2017b. A Nvidia GTX 1080 GPU was used for the image
testing of the CNN methods.

Three quality measures were used to evaluate the proposed
method:

• Peak Signal-to-Noise Ratio (PSNR), measured in (deci-
bels) dB, which is commonly used in medical image
processing (higher is better).

• Structural Similarity index (SSIM) [18], which focuses on
structural similarities between images (higher is better):

SSIM(x, y) =
(2µxµy)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(13)

where µxand µy are the mean value of images x and y,
σx and σy are the standard deviation of images x and
y, σxy is the covariance of x and y, c1 = (k1L)2 and
c2 = (k2L)2 (default values were used: L = 1 is the
dynamic range, k1 = 0.01 and k2 = 0.03).

• Bhattacharrya coefficient (BC) [19], which measures the
closeness of the two discrete pixel probability distribu-
tions P and P̂ corresponding to the ground truth (GT)
and modeled images with values in the range [0, 255]:

BC =

255∑
j=0

P (j)P̂ (j) (14)

where BC ∈ [0, 1] and higher is better.
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Fig. 2. Evolution of the MSE and SSIM metrics when varying the number
of shifts employed for the reconstruction (higher is better). Image 1 of the
Kirby 21 dataset, image 80 of disc1 of the OASIS dataset and T1 noiseless
image of Brainweb were used for the analysis.

Also, CPU time was measured for each method. In the case
of our method, as it is based on the execution of a CNN as
many times as shifted images we have generated, it could be
parallelized in different GPU’s. However, we measured the
processing time sequentially with only one GPU.

In addition to this, the results were examined from a
qualitative point of view. For that purpose, residual images
r for each method were computed as the difference between
the original HR image h and the super-resolved one s:

r = h− s (15)

The optimum residual image should be the darkest one,
as the differences must be close to zero. However, for a
better discrimination between methods, these residuals were
subtracted to a positive constant, so the images are displayed
in gray.

B. Datasets

Images obtained from different datasets were considered in
order to evaluate the results of the SR algorithms. Two T1-

TABLE I
CONSIDERED PARAMETER VALUES FOR OUR METHOD

Parameter Value
Window size K 25

Number of shifts M 13

weighted MRI images of the Kirby 21 (images 10 and 11)
[8]. These data were acquired using a 3-T MR scanner with
a 1.0× 1.0× 1.2mm3 voxel resolution over an field-of-view
(FOV) of 240× 204× 256mm acquired in the sagittal plane.
Two T1 images of the OASIS dataset (images 1 and 2 of
the cross-sectional data) [20] . Data were acquired on a 1.5-T
Vision scanner with a 1.0× 1.0× 1.25mm3 voxel resolution
over an FOV of 256×256mm. One image of the IBSR public
dataset [21]. It is named IBSR 07, it has image size 256 ×
256×128, with 1.5×1.0×1.0mm3 voxel resolution. Finally,
a T1-weighted image was acquired at CIMES using a 3-T MR
scanner with a 0.93 × 0.93 × 1.0mm3 voxel resolution over
an FOV of 256× 256mm.

C. Parameter selection

Apart from the parameters defined for the SRCNN model,
which were set at their default values, our model needs to
define two parameters: the window size K and the number of
shifts M . For this tuning, three images different from those
selected for the experiments were used: image 1 of the Kirby
21 dataset, image 80 of the OASIS dataset and a normal brain
T1 image of the Brainweb1 simulated database (slice thickness
1mm, 0 % noise level and RF = 0). Mean PSNR and SSIM
of these images were computed and the optimum parameters
are reported in TABLE I. The evolution of these metrics as a
function of the number of shifts employed in the reconstruction
is displayed in Fig. 2. It can be seen that there is a stabilization
as the number of shifts increases. A red square indicates the
selected value after considering both measures.

D. Competitors

The proposed method has been compared with other four
SR algorithms:
• Spline: cubic spline interpolation as implemented in Mat-

lab (Mathworks Inc.).
• NLMU (non-local means upsampling) [6]: it is a data

patch-based reconstruction.
• LRTV (low-rank total variation) [22]: low-rank regu-

larization and total variation techniques were used to
integrate both local and global information for image
reconstruction.

• SRCNN3D [17]: three-dimensional convolutional neural
network trained with patches of HR brain images.

The first three have been implemented in Matlab, but the
convolutional network developed by SRCNN3D, which it is
used by our proposal, has been developed using Caffe package
[11] on a Python framework.

1http://mouldy.bic.mni.mcgill.ca/brainweb/
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Fig. 3. Comparison of the MSE, SSIM and BC for the five methods. Mean and standard deviation of the results for all the test images are displayed, using
λ = 2.

E. Results

A comparison between the evaluated methods from a quanti-
tative point of view is summarized in Fig. 3. The graphics show
the mean and standard deviation for each method in error bars,
for the five tested images, using a super-resolution zoom factor
of 2. Traditional methods, i.e., Spline, NLMU and LRTV, are
clearly worse than CNN methods, both in mean and standard
deviation values. There are slight differences in PSNR, but
we can appreciate that the LRTV method overcomes the other
two in SSIM and BC. An improvement of all the metrics
can be seen when comparing our proposal with SRCNN3D.
PSNR increases from 29 dB up close to 32 dB, and SSIM
is also slightly improved, which indicates that the local brain
structures are restored in a better way. It is important to recall
that the most representative metric for this kind of images
is usually SSIM, because it focuses on the morphology of the
brain, and not so much on the intensity values, which, in a real
application, are not so relevant for the HR image. Moreover,
the high value (very close to 1) and small standard deviation
we have obtained in BC are also remarkable, so we can ensure
that the restored image is close to the original HR image.

The mean processing time required for the execution of each
method is displayed in Fig. 4. The Spline method has the best
performance, but, as we has explained before, the restored
image lacks sufficient quality. NLMU and LRTV are in the
opposite situation for time performance, as they need a lot of
time to process a single image and are also very dependent
on its dimensions. The higher the number of voxels, the more
time they use to generate the HR image. Learning methods
do not suffer too much for this reason. SRCNN3D processes
an image in around 8 seconds. Even though our method is
not the fastest one, it should be considered that a single GPU
was employed when using it. If N GPUs were simultaneously
employed, the total time would decrease linearly with N. In
the present conditions, our method takes around 53 seconds,
which is less still than NLUM and LRTV, while providing the
best quantitative performance.

A three-dimensional view of the Kirby 21 (image 10)
restoration is shown in Fig. 5. Slices of each plane are dis-
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Fig. 4. Comparison of the CPU time for the five methods. Mean of the results
for all the test images are displayed, in a logarithmic scale, using λ = 2.

played to evaluate the performance of each method from a
qualitative point of view. First, it is clear that both Spline
and NLMU generate a smoother HR image, which does not
correspond with the target image. This may indicate that they
depend a lot on the grade of smoothness of the input LR
image. LRTV is also slightly different. The CNN methods yield
similar results in this case.

The quantitative outcomes for the OASIS images are de-
tailed in TABLE II. In some cases the differences are small,
but it is clear that our method yields better measures in both
PSNR and SSIM, which combined with the really high values
of BC, demonstrate that our proposal is effective.

In Fig. 6 we can observe the notable performance of our
proposal, where the real T1 image from CIMES was pro-
cessed. If we focus on the residual images, we can extract
two different conclusions. First, Ours obtains the most uniform
gray residual, which indicates that the restored image has
the most similar voxel intensities with respect to the original
HR image. Second, if we compare internal parts of the brain
where the gray intensities are different, we see that the residual
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Fig. 5. Qualitative results for KKI2009-10-MPRAGE T1-weighted image for each method, applied with zoom factor 2. Three-dimensional images are shown,
where the XY plane corresponds to a slice of the axial view, XZ to a slice of the sagittal view and YZ to a slice of the coronal view.

TABLE II
RESULTS OBTAINED FOR EACH METHOD FOR THE TESTED OASIS IMAGES (HIGHER IS BETTER FOR PSNR, SSIM AND BC)

IMAGE 1 PSNR SSIM BC CPU time (sec.)

Spline 26.7531 0.8885 0.9658 0.6459

NLMU 27.8348 0.9108 0.9653 80.3417

LRTV 27.8079 0.9156 0.9882 3172.3286

SRCNN3D 29.0975 0.9225 0.9926 0.2463
Ours 29.9088 0.9277 0.9925 5.4251

IMAGE 2 PSNR SSIM BC CPU time (sec.)

Spline 25.4974 0.9064 0.9679 0.6305

NLMU 26.3516 0.9271 0.9674 83.1330

LRTV 25.9279 0.9311 0.9876 3241.5940

SRCNN3D 28.6044 0.9370 0.9943 0.2265
Ours 29.9607 0.9432 0.9949 5.9557

images of the competing methods still show those differences,
while our method does not. This implies that the other methods
could distort the original brain structures and voxel intensities.

A graphical depiction of a super-resolution zoom factor 3
with IBSR 07 image is shown in Fig. 7. Spline still remains
the worst reconstruction algorithm. Not too many differences
can be appreciated between the other methods apart from the
gray scale intensities in some regions of the brain. We can
assure that Ours also works well with different zoom factors.

IV. CONCLUSION

In this paper, a method for magnetic resonance image
super-resolution is presented. It is based on the combination
of two different methodologies. Low-resolution images are
processed through a convolutional neural network to perform
an image restoration in order to obtain a high-resolution
image. The quality of the restored images is increased by
applying a random shifting model to the input images and
then recomposing them into a consensus. A variety of images
of different datasets were used to evaluate the efficiency of



(a) Original HR image (b) LR image

(c) Spline (d) NLMU (e) LRTV (f) SRCNN3D (g) Ours

(h) Spline (i) NLMU (j) LRTV (k) SRCNN3D (l) Ours

Fig. 6. Qualitative results for the T1-weighted image from CIMES for each method, applied with zoom factor 2. The second row shows the image reconstructed
by each algorithm and the third row shows residual images between the reconstructed and the original HR images.

the algorithm, obtaining successful results. Quantitative results
show that it overcomes other state-of-art methods, enhancing
measures as SSIM, which indicates that the brain structures are
not distorted. Our proposal restores the images qualitatively
well for different zoom factors, avoiding over-smoothing.
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