5,632 research outputs found

    Differentially Private Decomposable Submodular Maximization

    Full text link
    We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem [Papadimitriou et al., 2008]. Previous work by Gupta et al. [2010] gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating empirical performance, which improves over the differentially private algorithms for the general case of submodular maximization and is close to the performance of non-private algorithms

    Randomized Composable Core-sets for Distributed Submodular Maximization

    Full text link
    An effective technique for solving optimization problems over massive data sets is to partition the data into smaller pieces, solve the problem on each piece and compute a representative solution from it, and finally obtain a solution inside the union of the representative solutions for all pieces. This technique can be captured via the concept of {\em composable core-sets}, and has been recently applied to solve diversity maximization problems as well as several clustering problems. However, for coverage and submodular maximization problems, impossibility bounds are known for this technique \cite{IMMM14}. In this paper, we focus on efficient construction of a randomized variant of composable core-sets where the above idea is applied on a {\em random clustering} of the data. We employ this technique for the coverage, monotone and non-monotone submodular maximization problems. Our results significantly improve upon the hardness results for non-randomized core-sets, and imply improved results for submodular maximization in a distributed and streaming settings. In summary, we show that a simple greedy algorithm results in a 1/31/3-approximate randomized composable core-set for submodular maximization under a cardinality constraint. This is in contrast to a known O(logkk)O({\log k\over \sqrt{k}}) impossibility result for (non-randomized) composable core-set. Our result also extends to non-monotone submodular functions, and leads to the first 2-round MapReduce-based constant-factor approximation algorithm with O(n)O(n) total communication complexity for either monotone or non-monotone functions. Finally, using an improved analysis technique and a new algorithm PseudoGreedy\mathsf{PseudoGreedy}, we present an improved 0.5450.545-approximation algorithm for monotone submodular maximization, which is in turn the first MapReduce-based algorithm beating factor 1/21/2 in a constant number of rounds

    Maximizing Symmetric Submodular Functions

    Full text link
    Symmetric submodular functions are an important family of submodular functions capturing many interesting cases including cut functions of graphs and hypergraphs. Maximization of such functions subject to various constraints receives little attention by current research, unlike similar minimization problems which have been widely studied. In this work, we identify a few submodular maximization problems for which one can get a better approximation for symmetric objectives than the state of the art approximation for general submodular functions. We first consider the problem of maximizing a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+ subject to a down-monotone solvable polytope P[0,1]N\mathcal{P} \subseteq [0, 1]^\mathcal{N}. For this problem we describe an algorithm producing a fractional solution of value at least 0.432f(OPT)0.432 \cdot f(OPT), where OPTOPT is the optimal integral solution. Our second result considers the problem max{f(S):S=k}\max \{f(S) : |S| = k\} for a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+. For this problem, we give an approximation ratio that depends on the value k/Nk / |\mathcal{N}| and is always at least 0.4320.432. Our method can also be applied to non-negative non-symmetric submodular functions, in which case it produces 1/eo(1)1/e - o(1) approximation, improving over the best known result for this problem. For unconstrained maximization of a non-negative symmetric submodular function we describe a deterministic linear-time 1/21/2-approximation algorithm. Finally, we give a [1(11/k)k1][1 - (1 - 1/k)^{k - 1}]-approximation algorithm for Submodular Welfare with kk players having identical non-negative submodular utility functions, and show that this is the best possible approximation ratio for the problem.Comment: 31 pages, an extended abstract appeared in ESA 201

    Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity

    Full text link
    Submodular maximization is a general optimization problem with a wide range of applications in machine learning (e.g., active learning, clustering, and feature selection). In large-scale optimization, the parallel running time of an algorithm is governed by its adaptivity, which measures the number of sequential rounds needed if the algorithm can execute polynomially-many independent oracle queries in parallel. While low adaptivity is ideal, it is not sufficient for an algorithm to be efficient in practice---there are many applications of distributed submodular optimization where the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of submodular maximization. In this paper, we give the first constant-factor approximation algorithm for maximizing a non-monotone submodular function subject to a cardinality constraint kk that runs in O(log(n))O(\log(n)) adaptive rounds and makes O(nlog(k))O(n \log(k)) oracle queries in expectation. In our empirical study, we use three real-world applications to compare our algorithm with several benchmarks for non-monotone submodular maximization. The results demonstrate that our algorithm finds competitive solutions using significantly fewer rounds and queries.Comment: 12 pages, 8 figure
    corecore