927,582 research outputs found
Structural Color 3D Printing By Shrinking Photonic Crystals
The rings, spots and stripes found on some butterflies, Pachyrhynchus
weevils, and many chameleons are notable examples of natural organisms
employing photonic crystals to produce colorful patterns. Despite advances in
nanotechnology, we still lack the ability to print arbitrary colors and shapes
in all three dimensions at this microscopic length scale. Commercial nanoscale
3D printers based on two-photon polymerization are incapable of patterning
photonic crystal structures with the requisite ~300 nm lattice constant to
achieve photonic stopbands/ bandgaps in the visible spectrum and generate
colors. Here, we introduce a means to produce 3D-printed photonic crystals with
a 5x reduction in lattice constants (periodicity as small as 280 nm), achieving
sub-100-nm features with a full range of colors. The reliability of this
process enables us to engineer the bandstructures of woodpile photonic crystals
that match experiments, showing that observed colors can be attributed to
either slow light modes or stopbands. With these lattice structures as 3D color
volumetric elements (voxels), we printed 3D microscopic scale objects,
including the first multi-color microscopic model of the Eiffel Tower measuring
only 39-microns tall with a color pixel size of 1.45 microns. The technology to
print 3D structures in color at the microscopic scale promises the direct
patterning and integration of spectrally selective devices, such as photonic
crystal-based color filters, onto free-form optical elements and curved
surfaces
Optimization of sharp and viewing-angle-independent structural color
Structural coloration produces some of the most brilliant colors in nature
and has many applications. However, the two competing properties of narrow
bandwidth and broad viewing angle have not been achieved simultaneously in
previous studies. Here, we use numerical optimization to discover geometries
where a sharp 7% bandwidth in scattering is achieved, yet the peak wavelength
varies less than 1%, and the peak height and peak width vary less than 6% over
broad viewing angles (0--90) under a directional illumination. Our
model system consists of dipole scatterers arranged into several rings;
interference among the scattered waves is optimized to yield the
wavelength-selective and angle-insensitive response. Such designs can be useful
for the recently proposed transparent displays that are based on
wavelength-selective scattering
Clusters at Half Hubble Time: Galaxy Structure and Colors in RXJ0152.7-1357 and MS1054-03
We study the photometric and structural properties of spectroscopically
confirmed members in the two massive X-ray--selected z=0.83 galaxy clusters
MS1054-03 and RXJ0152-1357 using three-band mosaic imaging with the Hubble
Space Telescope Advanced Camera for Surveys. The samples include 105 and 140
members of MS1054-03 and RXJ0152-1357, respectively, with ACS F775W magnitude <
24.0. We develop a promising new structural classification method, based on a
combination of the best-fit Sersic indices and the normalized root-mean-square
residuals from the fits; the resulting classes agree well with the visual ones,
but are less affected by galaxy orientation. We examine the color--magnitude
relations in detail and find that the color residuals correlate with the local
mass density measured from our weak lensing maps; we identify a threshold
density of , in units of the critical density, above which
the star formation appears to cease. For RXJ0152-1357, we also find a trend in
the color residuals with velocity, resulting from an offset of about 980 km/s
in the mean redshifts of the early- and late-type galaxies. Analysis of the
color--color diagrams indicates that a range of star formation time-scales are
needed to reproduce the loci of the galaxy colors. We also identify some
cluster galaxies whose colors can only be explained by large amounts, mag, of internal dust extinction. [Abstract shortened]Comment: 30 pages, emulateapj format; 23 figures, many in color. Accepted by
ApJ; scheduled for the 10 June 2006 issue. Some figures degraded; for a
higher resolution version, see: http://astro.wsu.edu/blakeslee/z1clusters
Towards an Isomorphism Dichotomy for Hereditary Graph Classes
In this paper we resolve the complexity of the isomorphism problem on all but
finitely many of the graph classes characterized by two forbidden induced
subgraphs. To this end we develop new techniques applicable for the structural
and algorithmic analysis of graphs. First, we develop a methodology to show
isomorphism completeness of the isomorphism problem on graph classes by
providing a general framework unifying various reduction techniques. Second, we
generalize the concept of the modular decomposition to colored graphs, allowing
for non-standard decompositions. We show that, given a suitable decomposition
functor, the graph isomorphism problem reduces to checking isomorphism of
colored prime graphs. Third, we extend the techniques of bounded color valence
and hypergraph isomorphism on hypergraphs of bounded color size as follows. We
say a colored graph has generalized color valence at most k if, after removing
all vertices in color classes of size at most k, for each color class C every
vertex has at most k neighbors in C or at most k non-neighbors in C. We show
that isomorphism of graphs of bounded generalized color valence can be solved
in polynomial time.Comment: 37 pages, 4 figure
Optical Surface Photometry of a Sample of Disk Galaxies. II Structural Components
This work presents the structural decomposition of a sample of 11 disk
galaxies, which span a range of different morphological types. The U, B, V, R,
and I photometric information given in Paper I (color and color-index images
and luminosity, ellipticity, and position-angle profiles) has been used to
decide what types of components form the galaxies before carrying out the
decomposition. We find and model such components as bulges, disks, bars, lenses
and rings.Comment: 14 figures. Accepted for publication in A&
More Color More Pride: Addressing Structural Barriers to Interracial LGBTQ Loving
Through an examination of State-supported racial structures, this Essay illustrates that even after the legalization of interracial and same-sex marriages, the State’s control over housing, education, and employment prospects impedes the formation of interracial LGBTQ relationships. This Essay suggests that reducing residential segregation can be a first step in dismantling structural barriers to interracial LGBTQ loving, as truly integrated housing would increase cross-racial contact, lead to better educational and employment outcomes, and give LGBTQ people of color a chance to improve their social capital. This, together with altering how issues of race are framed within the LGBTQ community, will help dispel negative racial stereotypes and facilitate the formation of interracial LGBTQ relationships
Print Advertisement Characteristics and Apple Variety Attraction: A Mimic Model Approach
A structural latent variable model of apple variety demand is used to analyze the effect of variety specific newspaper advertisement characteristics on variety attraction (preferences), and in turn on variety demand. The influence of advertisement size, the use of color and the Washington apple logo were analyzed. The estimated variety attraction variable is important in explaining demand. Model specifications which exclude this variable tend to understate demand elasticities. Advertisement size has a positive impact on Granny Smith, Fuji, and Gala sales. Red Delicious sales are positively influenced by color ads, but negatively affected by ads with the Washington apple logo.Apple demand, newspaper advertisements, structural latent variable model, Marketing,
- …
