927,582 research outputs found

    Structural Color 3D Printing By Shrinking Photonic Crystals

    Get PDF
    The rings, spots and stripes found on some butterflies, Pachyrhynchus weevils, and many chameleons are notable examples of natural organisms employing photonic crystals to produce colorful patterns. Despite advances in nanotechnology, we still lack the ability to print arbitrary colors and shapes in all three dimensions at this microscopic length scale. Commercial nanoscale 3D printers based on two-photon polymerization are incapable of patterning photonic crystal structures with the requisite ~300 nm lattice constant to achieve photonic stopbands/ bandgaps in the visible spectrum and generate colors. Here, we introduce a means to produce 3D-printed photonic crystals with a 5x reduction in lattice constants (periodicity as small as 280 nm), achieving sub-100-nm features with a full range of colors. The reliability of this process enables us to engineer the bandstructures of woodpile photonic crystals that match experiments, showing that observed colors can be attributed to either slow light modes or stopbands. With these lattice structures as 3D color volumetric elements (voxels), we printed 3D microscopic scale objects, including the first multi-color microscopic model of the Eiffel Tower measuring only 39-microns tall with a color pixel size of 1.45 microns. The technology to print 3D structures in color at the microscopic scale promises the direct patterning and integration of spectrally selective devices, such as photonic crystal-based color filters, onto free-form optical elements and curved surfaces

    Optimization of sharp and viewing-angle-independent structural color

    Get PDF
    Structural coloration produces some of the most brilliant colors in nature and has many applications. However, the two competing properties of narrow bandwidth and broad viewing angle have not been achieved simultaneously in previous studies. Here, we use numerical optimization to discover geometries where a sharp 7% bandwidth in scattering is achieved, yet the peak wavelength varies less than 1%, and the peak height and peak width vary less than 6% over broad viewing angles (0--90^\circ) under a directional illumination. Our model system consists of dipole scatterers arranged into several rings; interference among the scattered waves is optimized to yield the wavelength-selective and angle-insensitive response. Such designs can be useful for the recently proposed transparent displays that are based on wavelength-selective scattering

    Clusters at Half Hubble Time: Galaxy Structure and Colors in RXJ0152.7-1357 and MS1054-03

    Full text link
    We study the photometric and structural properties of spectroscopically confirmed members in the two massive X-ray--selected z=0.83 galaxy clusters MS1054-03 and RXJ0152-1357 using three-band mosaic imaging with the Hubble Space Telescope Advanced Camera for Surveys. The samples include 105 and 140 members of MS1054-03 and RXJ0152-1357, respectively, with ACS F775W magnitude < 24.0. We develop a promising new structural classification method, based on a combination of the best-fit Sersic indices and the normalized root-mean-square residuals from the fits; the resulting classes agree well with the visual ones, but are less affected by galaxy orientation. We examine the color--magnitude relations in detail and find that the color residuals correlate with the local mass density measured from our weak lensing maps; we identify a threshold density of Σ0.1\Sigma \approx 0.1, in units of the critical density, above which the star formation appears to cease. For RXJ0152-1357, we also find a trend in the color residuals with velocity, resulting from an offset of about 980 km/s in the mean redshifts of the early- and late-type galaxies. Analysis of the color--color diagrams indicates that a range of star formation time-scales are needed to reproduce the loci of the galaxy colors. We also identify some cluster galaxies whose colors can only be explained by large amounts, AV1A_V \approx 1 mag, of internal dust extinction. [Abstract shortened]Comment: 30 pages, emulateapj format; 23 figures, many in color. Accepted by ApJ; scheduled for the 10 June 2006 issue. Some figures degraded; for a higher resolution version, see: http://astro.wsu.edu/blakeslee/z1clusters

    Towards an Isomorphism Dichotomy for Hereditary Graph Classes

    Get PDF
    In this paper we resolve the complexity of the isomorphism problem on all but finitely many of the graph classes characterized by two forbidden induced subgraphs. To this end we develop new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop a methodology to show isomorphism completeness of the isomorphism problem on graph classes by providing a general framework unifying various reduction techniques. Second, we generalize the concept of the modular decomposition to colored graphs, allowing for non-standard decompositions. We show that, given a suitable decomposition functor, the graph isomorphism problem reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of bounded color valence and hypergraph isomorphism on hypergraphs of bounded color size as follows. We say a colored graph has generalized color valence at most k if, after removing all vertices in color classes of size at most k, for each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded generalized color valence can be solved in polynomial time.Comment: 37 pages, 4 figure

    Optical Surface Photometry of a Sample of Disk Galaxies. II Structural Components

    Full text link
    This work presents the structural decomposition of a sample of 11 disk galaxies, which span a range of different morphological types. The U, B, V, R, and I photometric information given in Paper I (color and color-index images and luminosity, ellipticity, and position-angle profiles) has been used to decide what types of components form the galaxies before carrying out the decomposition. We find and model such components as bulges, disks, bars, lenses and rings.Comment: 14 figures. Accepted for publication in A&

    More Color More Pride: Addressing Structural Barriers to Interracial LGBTQ Loving

    Get PDF
    Through an examination of State-supported racial structures, this Essay illustrates that even after the legalization of interracial and same-sex marriages, the State’s control over housing, education, and employment prospects impedes the formation of interracial LGBTQ relationships. This Essay suggests that reducing residential segregation can be a first step in dismantling structural barriers to interracial LGBTQ loving, as truly integrated housing would increase cross-racial contact, lead to better educational and employment outcomes, and give LGBTQ people of color a chance to improve their social capital. This, together with altering how issues of race are framed within the LGBTQ community, will help dispel negative racial stereotypes and facilitate the formation of interracial LGBTQ relationships

    Print Advertisement Characteristics and Apple Variety Attraction: A Mimic Model Approach

    Get PDF
    A structural latent variable model of apple variety demand is used to analyze the effect of variety specific newspaper advertisement characteristics on variety attraction (preferences), and in turn on variety demand. The influence of advertisement size, the use of color and the Washington apple logo were analyzed. The estimated variety attraction variable is important in explaining demand. Model specifications which exclude this variable tend to understate demand elasticities. Advertisement size has a positive impact on Granny Smith, Fuji, and Gala sales. Red Delicious sales are positively influenced by color ads, but negatively affected by ads with the Washington apple logo.Apple demand, newspaper advertisements, structural latent variable model, Marketing,
    corecore