1,075,849 research outputs found

    Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram

    Full text link
    Experiments under laboratory conditions were carried out to study the ordering in bidirectional pedestrian streams and its influence on the fundamental diagram (density-speed-flow relation). The Voronoi method is used to resolve the fine structure of the resulting velocity-density relations and spatial dependence of the measurements. The data show that the specific flow concept is applicable also for bidirectional streams. For various forms of ordering in bidirectional streams, no large differences among density-flow relationships are found in the observed density range. The fundamental diagrams of bidirectional streams with different forms of ordering are compared with that of unidirectional streams. The result shows differences in the shape of the relation for {\rho} > 1.0 m-2. The maximum of the specific flow in unidirectional streams is significantly larger than that in all bidirectional streams examined.Comment: 9 pages, 9 figures, 3 Table

    Growth and population dynamics of crayfish Paranephrops planifrons in streams within native forest and pastoral land uses

    Get PDF
    Population dynamics of crayfish (Paranephrops planifrons White) in streams draining native forest and pastoral catchments, Waikato, New Zealand, were investigated from September 1996 to July 1998. Crayfish densities were generally greater in native forest streams because of high recruitment over summer, but varied greatly between streams in both land uses. Peak densities in summer were 9 crayfish m-2 in native forest and 6 crayfish m-2 in pasture streams, but peak biomass in summer was much greater in pasture streams. Mark-recapture data showed that crayfish, particularly juveniles, in pasture streams grew faster than in native forest streams, through both greater moult frequency and larger moult increments. Females reached reproductive size at c. 20 mm orbit-carapace length (OCL) after their first year in pasture streams, but after 2 years in native forest streams. Annual degree days >10°C appeared to explain the differences in the timing of life cycles. Estimates of annual crayfish production (range = 0.8-3.4 g dry weight m-2 year-1) were similar in both land uses, and P/B ratios were between 0.95 and 1.2. Despite deforestation and conversion to pasture, crayfish in these Waikato hill-country streams have maintained similar levels of annual production to those in native forest streams, although juvenile growth rates have increased and longevity has decreased

    On the behaviour of streams in angle and frequency spaces in different potentials

    Get PDF
    We have studied the behaviour of stellar streams in the Aquarius fully cosmological N-body simulations of the formation of Milky Way halos. In particular, we have characterised the streams in angle/frequency spaces derived using an approximate but generally well-fitting spherical potential. We have also run several test-particle simulations to understand and guide our interpretation of the different features we see in the Aquarius streams. Our goal is both to establish which deviations of the expected action-angle behaviour of streams exist because of the approximations made on the potential, but also to derive to what degree we can use these coordinates to model streams reliably. We have found that many of the Aquarius streams wrap in angle space along relatively straight lines, and also in frequency space. On the other hand, from our controlled simulations we have been able to establish that deviations from spherical symmetry, the use of incorrect potentials and the inclusion of self-gravity lead to streams in angle space to still be along relatively straight lines but also to depict wiggly behaviour whose amplitude increases as the approximation to the true potential becomes worse. In frequency space streams typically become thicker and somewhat distorted. Therefore, our analysis explains most of the features seen in the approximate angle and frequency spaces for the Aquarius streams with the exception of their somewhat `noisy' and `patchy' morphologies. These are likely due to the interactions with the large number of dark matter subhalos present in the cosmological simulations. Since the measured angle-frequency misalignments of the Aquarius streams can largely be attributed to using the wrong (spherical) potential, determining the mass growth history of these halos will only be feasible once the true potential has been determined robustly.Comment: 21 pages, 18 figures. Accepted for publication in A&

    Duplicating RTP streams

    Get PDF
    Packet loss is undesirable for real-time multimedia sessions but can occur due to a variety of reasons including unplanned network outages. In unicast transmissions, recovering from such an outage can be difficult depending on the outage duration, due to the potentially large number of missing packets. In multicast transmissions, recovery is even more challenging as many receivers could be impacted by the outage. For this challenge, one solution that does not incur unbounded delay is to duplicate the packets and send them in separate redundant streams, provided that the underlying network satisfies certain requirements. This document explains how Real-time Transport Protocol (RTP) streams can be duplicated without breaking RTP or RTP Control Protocol (RTCP) rule

    Stellar Streams as Probes of Dark Halo Mass and Morphology: A Bayesian Reconstruction

    Full text link
    Tidal streams provide a powerful tool by means of which the matter distribution of the dark matter halos of their host galaxies can be studied. However, the analysis is not straightforward because streams do not delineate orbits, and for most streams, especially those in external galaxies, kinematic information is absent. We present a method wherein streams are fit with simple corrections made to possible orbits of the progenitor, using a Bayesian technique known as Parallel Tempering to efficiently explore the parameter space. We show that it is possible to constrain the shape of the host halo potential or its density distribution using only the projection of tidal streams on the sky, if the host halo is considered to be axisymmetric. By adding kinematic data or the circular velocity curve of the host to the fitting data, we are able to recover other parameters of the matter distribution such as its mass and profile. We test our method on several simulated low mass stellar streams and also explore the cases for which additional data are required.Comment: Accepted for publication in MNRAS; 20 pages, 18 figures and 3 table

    Processing count queries over event streams at multiple time granularities

    Get PDF
    Management and analysis of streaming data has become crucial with its applications in web, sensor data, network tra c data, and stock market. Data streams consist of mostly numeric data but what is more interesting is the events derived from the numerical data that need to be monitored. The events obtained from streaming data form event streams. Event streams have similar properties to data streams, i.e., they are seen only once in a fixed order as a continuous stream. Events appearing in the event stream have time stamps associated with them in a certain time granularity, such as second, minute, or hour. One type of frequently asked queries over event streams is count queries, i.e., the frequency of an event occurrence over time. Count queries can be answered over event streams easily, however, users may ask queries over di erent time granularities as well. For example, a broker may ask how many times a stock increased in the same time frame, where the time frames specified could be hour, day, or both. This is crucial especially in the case of event streams where only a window of an event stream is available at a certain time instead of the whole stream. In this paper, we propose a technique for predicting the frequencies of event occurrences in event streams at multiple time granularities. The proposed approximation method e ciently estimates the count of events with a high accuracy in an event stream at any time granularity by examining the distance distributions of event occurrences. The proposed method has been implemented and tested on di erent real data sets and the results obtained are presented to show its e ectiveness

    New meteor showers identified in the CAMS and SonotaCo meteoroid orbit surveys

    Full text link
    A cluster analysis was applied to the combined meteoroid orbit database derived from low-light level video observations by the SonotaCo consortium in Japan (64,650 meteors observed between 2007 and 2009) and by the Cameras for All-sky Meteor Surveillance (CAMS) project in California, during its first year of operation (40,744 meteors from Oct. 21, 2010 to Dec. 31, 2011). The objective was to identify known and potentially new meteoroid streams and identify their parent bodies. The database was examined by a single-linking algorithm using the Southworth and Hawkins D-criterion to identify similar orbits, with a low criterion threshold of D < 0.05. A minimum member threshold of 6 produced a total of 88 meteoroid streams. 43 are established streams and 45 are newly identified streams. The newly identified streams were included as numbers 448-502 in the IAU Meteor Shower Working List. Potential parent bodies are proposed.Comment: Accepted in Proceedings of the Meteoroids 2013 Conference Aug. 26-30, 2013, A.M. University, Poznan, Polan
    corecore