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ABSTRACT

We have studied the behaviour of stellar streams in the Aquarius fully cosmological N-body simulations of the formation of Milky
Way haloes. In particular, we have characterised the streams in angle and frequency spaces derived using an approximate but generally
well-fitting spherical potential. We have also run several test-particle simulations to understand and guide our interpretation of the
different features we see in the Aquarius streams. Our goal is both to establish which deviations of the expected action-angle behaviour
of streams exist because of the approximations made on the potential, but also to derive to what degree we can use these coordinates
to model streams reliably.
We have found that many of the Aquarius streams wrap in angle space along relatively straight lines, and distribute themselves along
linear structures also in frequency space. On the other hand, from our controlled simulations we have been able to establish that
deviations from spherical symmetry, the use of incorrect potentials and the inclusion of self-gravity lead to streams in angle space
to still be along relatively straight lines but also to depict wiggly behaviour whose amplitude increases as the approximation to the
true potential becomes worse. In frequency space streams typically become thicker and somewhat distorted. Therefore, our analysis
explains most of the features seen in the approximate angle and frequency spaces for the Aquarius streams with the exception of their
somewhat “noisy” and “patchy” morphologies. These are likely due to the interactions with the large number of dark matter subhaloes
present in the cosmological simulations. Since the measured angle-frequency misalignments of the Aquarius streams can largely be
attributed to using the wrong (spherical) potential, the determination of the mass growth history of these haloes will only be feasible
once (and if) the true potential has been determined robustly.

Key words. Galaxy: halo – dark matter – Galaxy: kinematics and dynamics – Galaxy: structure

1. Introduction

In the last two decades much progress has been made on
the discovery and characterisation of tidal streams around our
Milky Way and in other nearby galaxies (see e.g. Koposov et al.
2012; Martin et al. 2014). Tidal streams consist of stars stripped
from satellites (dwarf galaxies and globular clusters) that move
on nearby almost parallel orbits. As such, they constitute ex-
tremely sensitive probes of the mass distribution in the host sys-
tem (Johnston et al. 1999; Ibata et al. 2001; Johnston & Bullock
2004; Law et al. 2005; Law & Majewski 2010; Koposov et al.
2010; Vera-Ciro & Helmi 2013; Sanders & Binney 2013b;
Sanderson et al. 2014). This is one of the drivers of the obser-
vational and theoretical studies of streams, as one of the ulti-
mate goals is to establish the mass distribution in the dark halo
of galaxies like the Milky Way, which in turn will lead to a bet-
ter understanding of the nature of dark matter (see e.g. Strigari
2013).

The recently launched Gaia satellite (Perryman et al. 2001)
will provide the phase-space coordinates of a vast sample of
stars in the Milky Way in the next decade. Together with spec-
troscopic follow-up surveys of the fainter Gaia stars such as
4MOST (de Jong et al. 2012) and WEAVE (Dalton et al. 2012),
these datasets will provide an unprecedented detailed view of
our Galaxy. Our understanding of the dynamics of the halo
and its streams needs to be sharpened to maximally exploit
the wealth of data that will soon become available (see e.g.

Johnston et al. 1999; Law & Majewski 2010; Eyre & Binney
2011; Bonaca et al. 2014).

Action-angle coordinates provide an excellent tool to de-
scribe the evolution of streams (Tremaine 1999; Helmi & White
1999). For example, the evolution of stars in angle space is lin-
ear with time for a static potential, while the actions are adia-
batic invariants. The difficulty lies in finding the necessary co-
ordinate transformations to map observables into action-angle
space. Only for specific types of potentials, including spherical
and those of Staeckel form, can we directly compute the an-
gles and actions because the Hamilton-Jacobi equation is sep-
arable (Goldstein 1950; de Zeeuw 1985; Binney & Tremaine
2008). However, in recent years several approximate schemes
have been developed to overcome this problem. For example,
an appropriate toy potential can be used to compute the true
action-angles, based on the work of McGill & Binney (1990)
and Kaasalainen & Binney (1994; see e.g. McMillan & Binney
2008; Fox 2012; Sanders & Binney 2014; Bovy 2014). Another
method is to approximate the potential locally by a Staeckel
potential (axisymmetric or triaxial), a procedure known as the
“Staeckel fudge” (Binney 2012; Sanders & Binney 2015).

The availability of full phase-space information for a large
number of stars in the Gaia dataset will assist greatly in
exploiting the power of action-angle coordinates for streams
(McMillan & Binney 2008; Gómez et al. 2010). Actions (and
integrals of motion) may be used as well to derive the accre-
tion history of the halo of the Milky Way, because even when
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a stream is fully phase mixed it is still clumped in this space
(Helmi & de Zeeuw 2000; also see Gómez & Helmi 2010). We
do require the potential to evolve adiabatically slowly for the ac-
tions to remain clumped. This clumpiness in action space can
also be employed to determine the gravitational field in which
the stars have evolved because the largest degree of cluster-
ing occurs when the actions are computed in the true potential
(Sanderson et al. 2014; Magorrian 2014; Peñarrubia et al. 2012).
The angles and frequencies can also be used to this end, because
streams should lie along straight lines that have the same slope
in angle and in frequency space for the correct gravitational po-
tential under the condition that it is static (Sanders & Binney
2013a,b). In Buist & Helmi (2015) we argued that an adiabat-
ically growing potential will cause a small difference in these
slopes, or an “angle-frequency misalignment”. We also pointed
out that in angle and frequency space there are several other in-
dicators that the potential used in the computation may be incor-
rect. This will allow us to determine the characteristic parameters
of the true potential to be separated from its time-evolution.

We continue along that line of study in this Paper, where we
explore the behaviour of streams evolved in fully cosmological
N-body simulations. In particular, we characterise the streams in
the angle and frequency spaces obtained using an approximate
spherical potential. We also ran several test-particle simulations
to understand and guide our interpretation of the different fea-
tures we see in the cosmological simulations. Our goal is both
to establish which perturbations of the action-angle behaviour of
streams exist because of the approximations made on the poten-
tial, but also to derive to what degree we can use these coordi-
nates to study cosmologically evolved streams.

The structure of this Paper is as follows. In Sect. 2 we de-
scribe the cosmological N-body simulations and the stream cat-
alogue used. In Sect. 3 we discuss the behaviour of these streams
in action-angle coordinates, computed using an appropriately
chosen spherical potential. To guide our understanding of the
behaviour of these streams we present in Sect. 4 a set of test-
particle streams evolved in an axisymmetric potential, loosely
based on the cosmological simulations. In Sect. 5 we gain fur-
ther insight into the generic behaviour of streams by determin-
ing the impact of computing the action-angles of the test-particle
simulations of Sect. 4 in several incorrect potentials, and discuss
the effect of self-gravity. We end in Sect. 6 with a discussion and
conclusions.

2. Streams in cosmological simulations

2.1. Description of the Aquarius project and its stellar haloes

The Aquarius project (Springel et al. 2008; Navarro et al. 2010)
consists of a set of six re-simulations of Milky-Way mass
(∼1012 M�) dark matter haloes extracted from a larger cosmo-
logical parent simulation (Boylan-Kolchin et al. 2009). These
haloes were selected to have no close massive neighbours at
z = 0, and form late-type galaxies when evolved using semi-
analytic galaxy formation models. Haloes Aq-A to Aq-E are
believed to be representative of the Milky Way, while Aq-F
experienced a recent major merger and hence is less suitable
(Wang et al. 2011). We focus our study of streams to two of the
haloes, Aq-A and Aq-D, to avoid flooding this article with exam-
ples while providing a flavour of the variations found in different
systems.

We extracted streams from the accreted component of stellar
haloes modelled using the Durham semi-analytic model GAL-
FORM. Cooper et al. (2010) have associated stellar populations

with dark matter particles in the simulations via a “tagging”
scheme. Lowing et al. (2015) have taken this a step further and
generated individual stars from these populations by re-sampling
the dark matter particles and using stellar population synthe-
sis modelling. Another difference between these works is that
Cooper et al. used the Bower et al. (2006) version of GAL-
FORM, while Lowing et al. used the Font et al. (2011) version
which has improved physics on dwarf galaxy scales that makes
model satellites more similar to those observed around the Milky
Way. Here we use the public catalogue that Lowing et al. offer
online1, which has all stars with magnitude Mg < 7.

The Lowing dataset re-samples the dark-matter-particle po-
sitions and velocities in a way that aims to preserve their dis-
tribution in phase-space. To observe streams in the halo of the
Milky Way, it is common to select the Red Giant Branch (RGB)
stars because they are intrinsically bright. We noticed that some
of the thinner simulated streams look quite clumpy when only
using the RGB stars, most likely because of the re-sampling of
the dark matter particles. Since our interest is only in the dy-
namical features of the streams, we instead decided to use the
source (“tagged”) dark matter particles. To this end, we have
matched the dark-matter-particle ID’s to those in the outputs of
the Aquarius simulations and found the positions and veloci-
ties of the source particles from the Lowing dataset. Whether
we would have used the RGB stars or the dark matter particles
does not matter much for the number statistics as both sets have
similar sizes.

We aligned the coordinate system to that of the parent dark
halo by using the principal axes determined at 100 kpc from the
centre by Vera-Ciro et al. (2011). These authors used the reduced
inertia tensor method (Allgood et al. 2006) which closely fol-
lows isodensity contours. The z-direction is set along the major
axis of these haloes. Further details on the shapes are discussed
in Sect. 4.1.

2.2. Mass distribution of the Aquarius haloes

Although intrinsically triaxial, with triaxiality parameters in the
range 2/3 to 1 (see Sect. 4.1), the Aquarius haloes can be fit-
ted reasonably well with a spherical mass profile. Here we
use Navarro-Frenk-White functional form (Navarro et al. 1996,
1997, hereafter NFW), which provides a relatively good descrip-
tion in the regions where we study streams (r ∼ 50–100 kpc, see
Springel et al. 2008; Navarro et al. 2010), and we prefer it be-
cause of its simplicity and computational efficiency compared to
the slightly better fitting Einasto profile (Einasto 1965).

In Fig. 1 we show the results obtained when fitting the
spherically-averaged circular-velocity profile with two free pa-
rameters, the scale mass Ms and the scale radius rs, for halo Aq-
A and halo Aq-D (see also Navarro et al. 2010). The scale mass
is defined as Ms = M(rs) and is related to the virial mass as

Ms =
Mvir

f (c)
; f (x) =

log(1 + x) − x/(1 + x)
log(2) − 1/2

, (1)

where the concentration c ≡ rvir/rs. We note that halo Aq-D is
much better fitted by an NFW profile than halo Aq-A, which
appears to have a bump in its circular-velocity profile. Aq-A is
also more triaxial than Aq-D (Vera-Ciro et al. 2011).

1 http://galaxy-catalogue.dur.ac.uk:8080/StellarHalo
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Fig. 1. The enclosed mass (left) and cir-
cular velocity (right) for halo Aq-A (top
panels) and halo Aq-D (bottom panels)
with NFW fits to the circular velocity
(blue lines). The red dashed curve shows
the profile when we match the peak ve-
locity. For an NFW the position of this
maximum depends only on rs and its
magnitude only on Ms. The radial range
plotted starts at the convergence radius
(Power et al. 2003; Navarro et al. 2010)
and extends up to r200 (see Springel et al.
2008).

2.3. Selection of streams

Not all objects in the Aquarius stellar haloes are apparent as
stream-like structures. For example this may be the case if the
object is too small or if it has not been significantly disrupted.
Figure 2 shows that large streamy structures exist out to large
radii (see also Cooper et al. 2010). Each of the two Aquarius
stellar haloes have in the order of 100–200 individual progen-
itors, of which about 20% have produced discernible stream-like
features by z = 0, for example, a visible piece of a loop. We se-
lected these by eye in physical space and verified this selection
by checking that they also appeared streamy in their approximate
angle coordinates, as discussed later. For comparison we also in-
cluded several massive and seemingly phase-mixed objects that
most likely represent debris on quite radial orbits. We also im-
posed a lower limit of at least 500 “tagged” dark matter particles
for each progenitor to exclude the really small streams. This cor-
responds to a “tagged” dark matter mass of ∼7 × 106 M�, and
yields a total of 35 streams for halo Aq-A and Aq-D together. In
the main part of this Paper, we focus on ten streams from each
halo to illustrate their behaviour, a selection which includes a
few of the highly phase-mixed shell-like structures that appear
near the long axis (here the z-axis) and which move on more ra-
dial orbits. The remaining 25 streams are shown in the Appendix.

2.4. The morphology of selected streams

Streams consist of groups of stars that have similar orbits,
and the relatively small variance in their orbits creates struc-
tures whose trajectory follows closely the orbit of the progen-
itor (Jin & Lynden-Bell 2007; Binney 2008), although not ex-
actly (Choi et al. 2007; Eyre & Binney 2009; Sanders & Binney
2013b). We can therefore analyse the streams in terms of the or-
bits permitted by the potential.

Our selection of individual streams for halo Aq-A and Aq-D
are shown in Fig. 3. To some extent, the consideration of struc-
tures in these two different haloes helps us gauge the variety and
similarities in the characteristics of their streams. The IDs of the
streams given in this figure correspond one-to-one with tree-IDs

in the Lowing catalogue. We provide the progenitor’s masses of
these streams in Appendix A. The colours in the figure represent
the binding energy computed in the best fitting spherical NFW
potential (yellow is the most bound, blue is the least bound).
Most of the streams depict at least one clear stream-like feature
or loop (almost by construction, and for as far as a 2D projec-
tion allows us to show this), except for the debris for A98, A104,
D56, and D98, which we selected to demonstrate massive and
seemingly very phase-mixed objects on radial orbits.

Typically the streams consist of one or more petals, but they
are not the clean rosette-like figures seen in the case of spherical
potentials (see e.g. Buist & Helmi 2015), because in a triaxial
potential many more orbital families exist. In a triaxial potential,
orbits are typically box or tube orbits around the major, inter-
mediate, and minor axes. Box orbits get arbitrarily close to the
centre of the potential, a property they share with purely radial
orbits in a spherical potential, and they do not have a sense of
rotation. Tube orbits circulate about one of the axes of the po-
tential and never get to the centre of the potential, which they
have in common with loop orbits in a spherical potential. For
example, stream D56 and stream A98 are distributed on a struc-
ture that appears similar to that defined by a box orbit, while
stream A108 resembles a “fish”-orbit (3:2 resonance, see e.g.
Miralda-Escude & Schwarzschild 1989; Merritt & Valluri 1999;
Binney & Tremaine 2008). We also notice that the streams in
halo D also seem to be a bit better defined (i.e. smoother and
with longer loops) than those in halo A.

As a first step in our characterisation of streams, and for sim-
plicity, we explore how orbits integrated in the best fitting spher-
ical potential follow the trajectories delineated by the streams.
For the relatively massive progenitors, we naturally expect worse
agreement, as discussed below. The initial conditions of the orbit
were taken from a particle located in the highest density portion
of the stream (typically a bound particle in the progenitor). We
integrate this particle forward and backwards for 4 Gyr in our
best fitting NFW potential to approximately match the streams’
length.

In Fig. 4 we show the resulting orbits on the streams, but in
an orientation where the z-axis is in the direction of the mean
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Fig. 2. Density maps of all the dark matter particles tagged with stellar
populations originating in objects in haloes Aq-A and Aq-D with more
than 500 dark matter particles in their progenitor. The coordinate system
is aligned with the principal axes of the halo at 100 kpc. The minor and
intermediate axes are in the x-y plane and the major axis is along the z
direction.

angular momentum of the stream. An overview of the apocentre
and pericentre distances of the spherical orbits is given in Ap-
pendix A. For thinner streams, with only one or two wraps, the
orbits seem to follow the stream, such as for A158 and A151;
but also the much thicker A164 has at least one loop reason-
ably matched. Many of the heavier streams that have more wraps
show a big difference in radial extent when compared to the or-
bits, with stream A104 giving one of the least satisfactory results.
This is not too surprising given that the spherical potential only
supports a very limited range of orbit families. Also, a single
orbit cannot fit the stream’s radial extent because this depends
on the range of energies of the particles, and this is particularly
large for some of our objects.

In Fig. 5 we show the streams in the r-vr plane with the corre-
sponding orbits overlaid. For all objects, individual stream wraps
are discernible, even for those objects that are very massive and
well phase-mixed. For these it is clear that the radial extent is not
well matched by the orbits, as discussed earlier. Part of the com-
plex structure seen in this phase-space projection may also be at-
tributed to the triaxiality of the true potential. Nonetheless, in all
cases the spherically integrated orbit seems to match reasonably
at least a single wrap. Often the still bound part of the progen-
itor appears as a vertical diamond-shaped object in the stream.
Its location coincides quite well with the location of the high-
est density of the stream, which was chosen to define the initial
conditions for the orbital integration and is indicated by the red

cross. Near the progenitors of D82 and D72, we see very long
arms that at the ends seem to dissolve in the stream. Most likely
these particles are not yet completely unbound from the progen-
itor (see e.g. Gibbons et al. 2014)

We conclude that our orbits do reproduce some of the wraps
of the streams, but typically they lack the complexity that is seen
in the Aquarius simulations’ streams. This is partially because a
single orbit cannot represent these streams well, but also impor-
tantly because the spherical potential does not support the exact
same types of orbits.

3. Action-angle behaviour of Aquarius streams
in spherical potentials

3.1. General behaviour in a static potential

We now investigate the properties of our streams in action-angle
space, where their behaviour is expected to be particularly sim-
ple. For an individual particle in a static potential, angles evolve
linearly with time as

θi(t) = Ωit + θi(0), (2)

where Ωi are the orbital frequencies, which only depend on the
adiabatically invariant actions and hence are constant. For an en-
semble of particles this implies the spread in angles evolves as

∆θi(t) = ∆Ωit + ∆θi(0). (3)

For streams that have evolved for long enough (t � Ω−1
i ), we

can ignore the initial angle spread ∆θi(0), and therefore the ap-
pearance of the stream in angle and frequency is rather similar,
with the stream in angle space being stretched out in time.

We can understand the shape in frequency space more quan-
titatively using a Taylor expansion of the orbital frequencies Ωi
with respect to the actions J j (Helmi & White 1999):

∆Ωi ≈ Hi j∆J j, (4)

with the spreads measured with respect to the centre of mass of
the progenitor, and the Hessian of the Hamiltonian Hi j also eval-
uated at this point. If we diagonalise the Hessian (and assuming
the Einstein notation convention), then

Hi j∆J j = VikDkl(VT )l j∆J j = Vil

(
λl∆J̃l

)
, (5)

with V the matrix of eigenvectors ei of Hi j (as its columns), Dkl

the diagonal matrix with the eigenvalues λi, and ∆J̃l = VT
l j∆J j,

the action spreads in the eigenspace. In vector notation, this ex-
pression takes the simpler form of

∆Ω =
∑

i

λi ∆J̃i ei. (6)

Generally one of the eigenvalues of the Hessian is much larger
than the others2 , and this is responsible for the stream being a
thin 1D structure in frequency space (and therefore also in angle
space), that is elongated mostly in the direction associated to the
corresponding eigenvector (Tremaine 1999). We note here that
also the relative magnitude of the action spreads is relevant for
the direction in which the frequency distribution is elongated.

2 For the experiments explored in this paper, the largest eigenvalue of
the Hessian matrix is approximately 100 times bigger than the other two
eigenvalues in the spherical case, while the ratio is typically 10:1 for the
axisymmetric case.
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Fig. 3. Stream-like objects in Aq-A (top) and Aq-D (bottom) in the same projection as in the top panel of Fig. 2. Shown here are the “tagged” dark
matter particles while the labels indicate the object IDs used throughout this paper. The ranges are different in each panel to show the streams in
maximum detail. The colours represent the energy gradient computed using the best-fitting spherical NFW potential, with yellow the most bound
particles and blue those least bound. The streams have been sorted by dark matter mass, with the lightest stream on the top-left and the most
massive on the bottom-right.

The action-angle coordinates of course depend on the under-
lying potential. For example, in a spherical potential there are
two independent frequencies Ωφ and Ωr (and Ωφ = Ωϑ, apart
from a possible sign difference), and therefore for sufficiently
long times ∆θr(t) = ∆Ωrt and ∆θφ(t) = ∆Ωφt. This implies that
in this regime in the space of angles, streams follow a straight
line with slope S (∆θ) = ∆θφ/∆θr which is the same slope as in
frequency space S (∆Ω) = ∆Ωφ/∆Ωr.

3.2. Computing the angles and frequencies

In this section, and as a first approximation, we assume the
mass distribution of the Aquarius haloes is represented by our
best fitting spherical NFW potential. For this potential we com-
pute the actions, angles, and frequencies (see Goldstein 1950;
Binney & Tremaine 2008, for the general procedure). As noted
above, in a spherical potential, Ωφ and Ωϑ are equal by defini-
tion, however, the corresponding angles θϑ and θφ will be differ-
ent for the particles in our streams. This is because they depend
on the current positions and velocities of the particles which are

the result of evolution in a different potential than that used to
compute the angles3.

In Figs. 6 and 7 we show the distribution of particles in the
θr−θφ and θr−θϑ spaces respectively. The most striking feature in
these figures is that each of the streams is distributed along more
or less straight lines (Sanders & Binney 2013a; Buist & Helmi
2015), even though the host potential is really not spherical. For
all streams, the behaviour in θr − θϑ space is generally cleaner
and the individual streams are seen more clearly than in θr − θφ
space. That such a difference exists is a reflection of the haloes
being non-spherical.

We fitted straight lines to the streams, in analogy to what we
did in Buist & Helmi (2015), and the results are given also in the
figures and in Table 1. Our method to fit lines to the distributions
of streams in angle space is discussed in Appendix D. We fitted
the distributions in θr − θφ and θr − θϑ separately because as we

3 When applied to our streams, we lose a small fraction of the particles
in this procedure, for example because some of the numerical integrals
do not converge well if the particles are almost unbound in the approx-
imated spherical potential.
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Fig. 4. As Fig. 3 but now overplotting orbits integrated in the best fitting spherical potential to halo Aq-A (top panels) and halo Aq-D (bottom
panels). The orientation of the streams has been changed such that the z-direction corresponds with the mean angular momentum of the particles.
The plotted orbit is that of a particle (indicated with a red cross) near or in the bound part of the progenitor and has been evolved 4 Gyr forward
and backwards in time assuming a static spherical potential.

just saw, the behaviour in these spaces is different. Particles that
are still bound to the progenitor are removed from the fitting
procedure because they are not expected to follow the general
action-angle behaviour of the stream. The result of this removal
is clearly visible, for example in streams D72 and A164 where
we see a gap in the middle of the distribution in angle space.

The fitting procedure makes evident several noticeable dis-
tortions in angle space because the different wraps of a stream
are not always on parallel lines, such as for stream A108 and
A116. Much more subtle is the deviation seen in the bottom-left
of stream A158. These distortions clearly pose a challenge to
the determination of the slope. For this reason we have to inter-
pret the slopes determined with our method generally with some
care (especially in the case of A116) as the quoted errors do not
account for such systematic uncertainties. A quick visual inspec-
tion usually helps to evaluate the outcome and the reliability of
the fit. The slopes in θr − θφ space are much more varied than
those in θr − θϑ space, which, especially for halo Aq-D, all clus-
ter around 0.5. Generally, we also notice that the streams in halo
Aq-D seem less distorted than those in halo Aq-A.

In our selection of streams, we also included several objects
on very radial orbits and whose debris is distributed in an hour-
glass shape in configuration space, such as A98, D56, and D98.
In θr − θφ space, they seem very mixed and do not show very
distinct structures, yet their behaviour in θr − θφ is remarkable,
with streams along straight lines being clearly apparent (see e.g.
D56 and D98 in Fig. 7). These objects are typically more massive
and have deposited debris close to the centre of the halo and
therefore are more phase mixed.

3.3. Comparing the slopes in frequency and angle space

In Fig. 8 we show the frequency distributions of the streams.
These follow closely a straight line, although sometimes they are
quite thick. For A108 and A116 the width in frequency space
is not everywhere the same. This is one of the signatures ex-
pected when using the wrong potential to compute the frequen-
cies. The determination of the fitted slopes is more robust in fre-
quency space, and these show a considerably smaller range than
the slopes in angle space.
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Fig. 5. As Fig. 4 but now showing the r − vr projection for halo Aq-A (top panels) and halo Aq-D (bottom panels).

Table 1. Overview of the fitted slopes obtained assuming a spherical NFW potential for Aquarius haloes Aq-A and Aq-D from Figs. 6–8.

Stream S (∆θr,φ) S (∆θr,ϑ) S (∆Ω) Stream S (∆θr,φ) S (∆θr,ϑ) S (∆Ω)
A98 0.260 ± 0.06 0.489 ± 0.01 0.566 ± 0.001 D56 0.415 ± 0.07 0.451 ± 0.006 0.561 ± 0.0004

A104 0.641 ± 0.03 0.544 ± 0.02 0.568 ± 0.0005 D72 0.561 ± 0.01 0.490 ± 0.03 0.585 ± 0.002
A108 0.758 ± 0.06 0.820 ± 0.01 0.525 ± 0.002 D82 0.638 ± 0.01 0.525 ± 0.01 0.544 ± 0.001
A112 0.413 ± 0.03 0.542 ± 0.009 0.577 ± 0.002 D91 0.531 ± 0.01 0.553 ± 0.01 0.571 ± 0.002
A116 1.024 ± 0.04 0.539 ± 0.04 0.574 ± 0.003 D98 0.714 ± 0.04 0.405 ± 0.007 0.548 ± 0.0003
A140 0.719 ± 0.007 0.473 ± 0.1 0.618 ± 0.002 D116 0.439 ± 0.03 0.477 ± 0.02 0.605 ± 0.002
A151 0.678 ± 0.04 0.689 ± 0.02 0.710 ± 0.005 D118 0.474 ± 0.04 0.546 ± 0.04 0.566 ± 0.002
A158 0.616 ± 0.004 0.637 ± 0.002 0.652 ± 0.003 D120 0.627 ± 0.007 0.470 ± 0.07 0.579 ± 0.001
A164 0.681 ± 0.06 0.648 ± 0.005 0.632 ± 0.0008 D122 0.609 ± 0.07 0.507 ± 0.07 0.588 ± 0.004
A171 0.983 ± 0.06 0.452 ± 0.04 0.572 ± 0.002 D129 0.532 ± 0.06 0.552 ± 0.01 0.575 ± 0.002

The slopes in angle space and frequency space differ, espe-
cially when comparing the θr − θφ space to frequency space.
They are expected to be equal in the true (static) poten-
tial (Sanders & Binney 2013a,b). In Buist & Helmi (2015), we
found that in a time-dependent potential, the slope in angle space
is steeper than in frequency space (i.e. S (∆θ) > S (∆Ω)). There-
fore, since the potentials in the Aquarius N-body simulations

have grown in time, we might expect the angle space slope to
be larger. For some of the streams in our sample this is in-
deed the case, but there are quite a few streams for which this
does not hold, such as D116 and A112, for which the magni-
tude of the angle-frequency difference is far greater than what
can be expected from (adiabatic) evolution of the halo. Also in
θr−θϑ space, many streams are not in line with our expectations.
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Fig. 6. The θr − θφ space for the streams selected from halo Aq-A (top panels) and Aq-D (bottom panels) shown in previous figures. The angles
have been computed using the best fitting spherical NFW potentials, and are centred around the most bound particle in the progenitor, or around
a particle closest to the highest density in θr − θφ space. The colours indicate the energy gradient assuming the spherical NFW potential. The
distributions were fitted with straight lines after generously removing particles still bound to the progenitor. The insets show the fitted slope and
its error as estimated from bootstrapping 200 times.

Overall we find that in θr − θϑ, 28 of the 35 streams have a larger
slope in frequency than in angle space, that is, they do not follow
the expected behaviour, while for θr − θφ, this is the case for 17
out of the 35 streams.

The simulations of Buist & Helmi (2015) that follow the
evolution of streams in a spherical potential, show that differ-
ences between the slopes can be obtained when the wrong po-
tential is assumed. For example, S (∆θ) − S (∆Ω) > 0 when the
enclosed mass is too high, and S (∆θ) − S (∆Ω) < 0 when the
enclosed mass is too low. We therefore may attribute the differ-
ences in slope to having assumed an incorrect potential (mostly
in shape), and not to time-dependence.

3.4. Influence of the potential

We also expect an energy gradient to be present along a stream
(Buist & Helmi 2015) and, although this is visible in frequency
space, it is less clear in angle space. This is not unexpected as

the frequencies depend on energy (via the actions) and more en-
ergetic particles move faster, while, on the other hand, the an-
gles depend also on other phase-space coordinates. Even small
(of the order of 10%) differences in the characteristic parameters
of the potential can lead to the energy gradient being lost in an-
gle space, even when the stream itself has a normal appearance
(Buist & Helmi 2015). An exception is A164 in θr − θφ-space,
which does seem to have a continuous energy gradient when fol-
lowing the stream along its various wraps.

To see if the behaviour in angle space and the energy gradi-
ent could be improved, we experimented by changing one of the
characteristic parameters, namely the enclosed mass for the par-
ticular case of A158. However, we were unable to remove the
bend seen at the bottom-left in θr − θφ space, a behaviour that
in the spherical case is known to be indicative of wrong values
of the characteristic parameters of the potential. It seems clear
from the analysis presented in this section that it is the shape of
the potential that is wrong rather than the value of the enclosed
mass.
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Fig. 7. As Fig. 6, but now showing the θr − θϑ angle space for the streams selected from halo Aq-A (top panels) and Aq-D (bottom panels).

We conclude that streams can still look rather regular in an-
gle and frequency space when making an incorrect assumption
about the shape of the potential, even if they evolved in a po-
tential that grew via accretion and merging. In later sections of
this Paper, we will investigate the conditions for streams to be
distributed along straight lines such as those seen in Figs. 6–8.

4. Test-particle simulations of streams
in axisymmetric potentials

The Aquarius haloes are not spherically symmetric, and it
is important to understand which of the deviations seen in
the streams’ behaviour in angle space arise from having as-
sumed a spherical potential. Rather than attempting to study
their dynamics in a full triaxial potential, we add only one de-
gree of complexity and now analyse a set of example streams
evolved in the axisymmetric Kuzmin-Kutuzov Staeckel potential
(Dejonghe & de Zeeuw 1988) with similar density axis-ratios as
halo Aq-D of the Aquarius simulations4. For the streams we
have used as initial orbital conditions those extracted from the

4 We focus on Aq-D because it has a less complex mass distribution
than Aq-A, as can be seen from Fig. 1.

present-day positions and velocities of particles in halo Aq-D
(as described in Sect. 2.4). An axisymmetric Staeckel potential
allows for a relatively straightforward computation of the actions
and angles. This implies that we can directly compare their be-
haviour using true action-angles to those computed assuming a
spherical approximation to this potential.

4.1. Potential set-up

To motivate our choice of the characteristic parameters of our ax-
isymmetric potential, we use the Aquarius haloes. These haloes
are triaxial, and may be described with two axis ratios: q = c/a
(long to short axis ratio) and s = b/a (intermediate to long axis
ratio, i.e. a ≥ b ≥ c). A useful quantity is the triaxiality parame-
ter (Franx et al. 1991),

T =
a2 − b2

a2 − c2 =
1 − s2

1 − q2 , (7)

which is zero for an oblate halo and equals unity for a prolate
halo. Haloes Aq-A and Aq-D have triaxiality parameters be-
tween T = 2/3 and 1 at a radius of 50 kpc, making them some-
what more prolate, with halo Aq-A being more triaxial than halo
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Fig. 8. Frequency distributions computed using the best fitting spherical potentials for our selection of streams from halo Aq-A (top panels) and
Aq-D (bottom panels) shown in previous figures. The panels are centred around the same particle, as in Figs. 6 and 7. The distributions were fitted
with straight lines after removing generously the bound particles from the progenitor. The colours indicate the energy gradient for the spherical
potential. The insets show the fitted slope and estimated errors.

Aq-D. Therefore, these haloes are not in the range of being ex-
tremely triaxial (T = 1/3 to 2/3, see also Warren et al. 1992), al-
though at larger radii their triaxiality increases (Vera-Ciro et al.
2011).

The functional form of the Kuzmin-Kutuzov potential is
given by Dejonghe & de Zeeuw (1988):

ΦK(R, z) = −
GMK√

a2
K + c2

K + R2 + z2 + 2
√

a2
Kc2

K + R2c2
K + a2

Kz2

,

(8)

where MK, aK, and cK are characteristic mass and scale param-
eters, respectively. A coordinate transformation to prolate ellip-
soidal coordinates (λ, ν, φ) leads to a simple expression,

ΦK(λ, ν) = −
GMK
√
λ +
√
ν
, (9)

where the relations between λ, ν and R, z can be expressed as

λν = c2
KR2 + a2

Kz2 + a2
Kc2

K,

λ + ν = R2 + z2 + a2
K + c2

K. (10)

We take λ > ν. Depending on the ratio cK/aK, this coordi-
nate system can be used to represent a prolate (qK > 1) or an
oblate (qK < 1) mass distribution (see also the discussion in
Dejonghe & de Zeeuw 1988). The potential in Eq. (9) reduces
in the spherical limit (aK = cK) to Henon’s isochrone potential
(Dejonghe & de Zeeuw 1988; Henon 1959). For convenience we
link the parameters MK, aK, and cK to the isochrone scale ra-
dius riso and scale mass Miso, and introduce the flattening pa-
rameter qK ≡ cK/aK. We define the isochrone scale mass as
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Fig. 9. Spatial distribution of our selection of test-particle streams after 10 Gyr of evolution in the axisymmetric Kuzmin-Kutuzov potential. The
colours represent the energy gradient, with the most bound particles in yellow and those least bound in blue. The z-axis is aligned with the major
axis of the potential.

Miso = Misochrone(riso), such that

MK = Miso

(
3
√

2
− 2

)−1

,

aK = riso
2

1 + qK
,

cK = riso
2qK

1 + qK
· (11)

These relations satisfy aK + cK = 2riso, that is, the isochrone
scale radius is the average of the Kuzmin-Kutuzov axis lengths.
For the determination of the numerical values of the parameters,
we refer to Appendix C, where we set qK = 1.87, Miso = 1.58 ×
1011 M�, and riso = 22.84 kpc.

4.2. Streams’ set-up

As mentioned earlier, we use a subset of the streams’ posi-
tions and velocities extracted from the Aquarius simulations
to evolve our test-particle simulations. The stream progenitor

is composed of 10 000 particles that follow an isotropic Gaus-
sian distribution in position and velocity, characterised by dis-
persions σpos = 0.3 kpc and σvel = 10 kpc/Gyr respectively.
This can be roughly translated into a progenitor mass M using
that σ2

vel ∼ GM/R and where we take R = σpos, which results
in M ≈ 7.4 × 107 M�. The orbits are integrated for 10 Gyr in
the Kuzmin-Kutuzov potential with the parameters derived from
Aquarius halo D.

Figure 9 shows our streams, where the inset labels are the
IDs of the corresponding Aq-D streams (e.g. S140 is based on
the position and velocity of one particle in D140). We note it is
not our goal to reproduce the original streams from the Aquarius
haloes in the axisymmetric limit, but to understand the behaviour
of streams in the non-spherical regime.

4.3. Action-angles in the true potential

For the Kuzmin-Kutuzov potential, the Hamilton-Jacobi equa-
tion separates in prolate spheroidal coordinates (λ, ν, φ). This
means that we can compute the true actions (Jλ, Jν, Jφ), the
corresponding frequencies, and the angles in a straightforward
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Fig. 10. Test-particle streams in the true λ - φ frequency (top) and angle (bottom) spaces after 10 Gyr of evolution in the Kuzmin-Kutuzov potential.
The colours represent the energy gradient with the most bound particles in yellow and those least bound in blue. The panels have been centred
on the current position of the centre of mass of the progenitor system. The insets give the best-fitting slopes to the distributions as well as the
angle-frequency misalignment ∆S .

manner5. At large distances from the centre λ behaves like the
radial coordinate r from the spherical case, while ν follows al-
most the longitudinal angle ϑ. For this reason, we will generally
compare Ωλ with Ωr, and Ων with Ωϑ (and the same for their
corresponding angles).

The results for each of the streams in Fig. 9 are shown in
Figs. 10 and 11 for both projections of frequency space (top) and
angle space (bottom). In angle space, the streams are distributed
along straight lines (just as in frequency space), spreading out af-
ter 10 Gyr of evolution. The insets in the figures show the slopes
obtained from fitting straight lines to the distributions, where the
error is estimated from bootstrapping the fits 200 times. These
results are also summarised in Table 2.

In the top panels, we also give the angle-frequency mis-
alignment ∆S = S (∆θ) − S (∆Ω), with the corresponding er-
ror. We note that typically |∆S | ∼ 0.01–0.02, which is larger
5 For a discussion on how to compute the actions in an axisymmetric
potential we refer to Helmi & White (1999), Sanders (2012).

than found by Buist & Helmi (2015) for the streams evolved
in a static spherical potential. This is mostly due to the larger
progenitor used here which causes the streams to be wider, and
this has an impact both on the initial spreads and on the fitting
procedure. This is explicitly demonstrated in Fig. 12, where we
show a stream on the same orbit as S140 but now for the Carina-
like progenitor (σpos = 0.1 kpc and σvel = 5 kpc/Gyr) used
in Buist & Helmi (2015) and evolved for 10 Gyr. We see that
the angle-frequency misalignment is now consistent with being
zero.

5. Action-angle behaviour of streams
in approximate potentials of varying shape

Thus far we have discussed, mostly from a theoretical point of
view, what to expect in angle and frequency space in the true
potential, and why streams are on straight lines. In this section,
we explore what happens when the wrong potential is used to
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Fig. 11. Same as in Fig. 10, but now for the λ − ν frequency and angle spaces.

Table 2. Overview of the fitted slopes in Figs. 10 and 11 of our test-particle streams integrated in an axisymmetric Staeckel potential.

Stream S (∆θλ,φ) S (Ωλ,φ) ∆S λ, φ S (∆θλ,ν) S (Ωλ,ν) ∆S λ, ν

S56 0.517 ± 0.03 0.573 ± 0.0006 −0.056 ± 0.03 0.878 ± 0.04 1.114 ± 0.001 −0.235 ± 0.04
S86 0.683 ± 0.003 0.656 ± 0.0006 0.028 ± 0.004 1.156 ± 0.02 1.173 ± 0.002 −0.017 ± 0.02
S87 0.577 ± 0.01 0.576 ± 0.002 0.001 ± 0.01 1.069 ± 0.04 1.074 ± 0.005 −0.005 ± 0.04

S103 0.437 ± 0.01 0.447 ± 0.002 −0.010 ± 0.01 0.873 ± 0.01 0.871 ± 0.002 0.002 ± 0.01
S116 0.655 ± 0.007 0.669 ± 0.0005 −0.014 ± 0.007 1.198 ± 0.1 1.270 ± 0.001 −0.072 ± 0.1
S118 0.370 ± 0.01 0.365 ± 0.002 0.005 ± 0.01 0.794 ± 0.04 0.747 ± 0.003 0.047 ± 0.04
S121 0.702 ± 0.006 0.709 ± 0.0009 −0.008 ± 0.006 1.326 ± 0.01 1.392 ± 0.002 −0.066 ± 0.01
S122 0.598 ± 0.03 0.579 ± 0.002 0.019 ± 0.03 0.916 ± 0.03 1.124 ± 0.002 −0.208 ± 0.03
S138 0.610 ± 0.01 0.620 ± 0.001 −0.010 ± 0.01 0.952 ± 0.03 1.170 ± 0.002 −0.218 ± 0.03
S140 0.614 ± 0.006 0.630 ± 0.0004 −0.016 ± 0.006 1.190 ± 0.006 1.204 ± 0.0004 −0.013 ± 0.006

compute the angles and frequencies. To this end we employ
the test-particle simulations of Sect. 4 run in the axisymmet-
ric Staeckel potential, but we will assume a spherical potential
(Sect. 5.1), a Staeckel potential but with a different flattening pa-
rameter (q′K = 1/qK, Sect. 5.2), and a spherical potential with
a more dissimilar radial mass distribution (Sect. 5.3). We also
explore the effect of self-gravity in Sect. 5.4.

5.1. Spherical approximation

We now compute the angles and frequencies for the test-particle
simulations assuming the isochrone potential. This potential
constitutes the spherical limit of the Kuzmin-Kutuzov potential,
and its characteristic parameters were defined in Sect. 4.1. The
resulting angle and frequency distributions are shown in Fig. 13,
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Fig. 12. Stream S140 but now with a Carina-like
progenitor, after 10 Gyr of evolution in the Kuzmin-
Kutuzov potential. The colours and insets are the same
as in Fig. 10. With the smaller progenitor, the stream is
much thinner and the error on the fitting is significantly
reduced, which basically removes the angle-frequency
misalignment.

Table 3. Overview of the fitted slopes in Fig. 13 obtained assuming a
spherical isochrone potential for our test-particle streams evolved in an
axisymmetric Staeckel potential.

Stream S (∆θr,φ) S (∆θr,ϑ) S (∆Ω)
S56 0.499 ± 0.008 0.488 ± 0.005 0.286 ± 0.002
S86 0.663 ± 0.004 0.588 ± 0.006 0.637 ± 0.001
S87 0.578 ± 0.02 0.523 ± 0.02 0.406 ± 0.005

S103 0.438 ± 0.02 0.452 ± 0.003 0.530 ± 0.0006
S116 0.359 ± 0.01 0.440 ± 0.02 0.467 ± 0.003
S118 0.309 ± 0.01 0.455 ± 0.006 0.369 ± 0.002
S121 0.680 ± 0.007 0.675 ± 0.004 0.761 ± 0.001
S122 0.450 ± 0.08 0.557 ± 0.06 0.378 ± 0.003
S138 0.495 ± 0.02 0.554 ± 0.005 0.460 ± 0.002
S140 0.662 ± 0.007 0.620 ± 0.004 0.424 ± 0.002

where we do not include the Ωr − Ωϑ space as it is redundant in
the spherical case. Instead, the behaviour in the angles θφ and θϑ
is relevant since these additionally depend on the physical loca-
tion of the particles (which encodes information about the poten-
tial in which they were evolved as discussed earlier in Sect. 3).
The characteristic parameters of the fitted straight lines are also
listed in Table 3.

In the top panel of Fig. 13 we show the resulting frequency
distributions. We find that quite a few streams have become
thicker and distorted in the spherical approximation to the po-
tential in comparison to their behaviour in the true axisymmet-
ric potential. Some of the streams seem quite irregular such as
S140, a characteristic that was also seen for some of the Aquar-
ius streams (see e.g. stream A107 in Fig. 8). As a consequence of
the distortions, it is generally more difficult to fit straight lines to

the frequency distribution, and therefore also the determination
of their slopes is less reliable (see e.g. S122 and S138).

To understand this behaviour, it is interesting to explore how
orbits map onto frequency space if the frequencies are computed
at each time step in the approximate spherical potential. This is
shown in Fig. 14 for two different orbits. The trajectories oscil-
late in frequency, while if the potential had been truly spheri-
cal they would collapse into a single point. These oscillations
are therefore directly related to how well the isochrone poten-
tial represents the mass distribution. We take from this that the
thickening of streams is caused by the degree to which the orbits
of those particles are described by a spherical potential.

The central panel of Fig. 13 shows the θr − θφ space. Streams
such as S103 and S121 appear quite similar to their counterparts
in Fig. 10, plotted in their natural (true) angle space (θλ − θφ).
When the straight line fits look reasonable, the slopes in this
spherical angle space and in the corresponding Staeckel angles
are similar, differing by ∼0.05. As for the Aquarius streams, the
slopes in θr − θφ span a range between ∼0.4–0.7. In all cases,
the streams have become thicker. The energy gradient along the
streams seems especially discontinuous at some locations, while
for some streams, such as S140 and S121, it is somewhat better
retained.

The bottom panels of Fig. 13 show the angles θr − θϑ. The
comparison of θλ − θν to θr − θϑ is less straightforward because
Ωϑ and Ων differ by a factor of two in the spherical limit.

We conclude that using a spherical approximation to the po-
tential leads to an increase of the spread in frequency space, by
making the streams longer, wider, and/or distorted. However, the
energy gradient remains quite intact in this space. The streams in
angle space often look much more well-behaved, although they
do become thicker and the energy gradient is not preserved. This
good behaviour probably reflects that the spherical potential has
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Fig. 13. Test-particle streams evolved in the axisymmetric Kuzmin-Kutuzov potential and shown in Figs. 9–11, depicted now assuming a spherical
approximation to the potential in the space of frequencies ∆Ωr − ∆Ωφ (top panels) and angles ∆θr − ∆θφ (middle panels) and ∆θr − ∆θϑ (bottom
panels). The colours represent the energy gradient in the isochrone potential. The panels have been centred on the progenitor position. The insets
indicate the fitted slopes for the approximate potential. The errors were found by bootstrapping the fit 200 times.
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Table 4. Overview of the fitted slopes in Figs. 15 and 16 obtained for our test-particle streams assuming an axisymmetric Staeckel potential with
flattening q′K = 1/qK.

Stream S (∆θλ,φ) S (∆Ωλ,φ) S (∆θλ,ν) S (∆Ωλ,ν)

S56 0.487 ± 0.006 0.335 ± 0.002 0.956 ± 0.01 1.767 ± 0.004
S86 0.644 ± 0.003 0.570 ± 0.001 0.950 ± 0.07 1.418 ± 0.002
S87 0.589 ± 0.03 0.387 ± 0.003 1.035 ± 0.02 1.582 ± 0.006

S103 0.480 ± 0.01 0.297 ± 0.003 0.994 ± 0.004 1.043 ± 0.002
S116 0.582 ± 0.005 0.439 ± 0.003 0.869 ± 0.06 1.380 ± 0.004
S118 0.389 ± 0.03 0.398 ± 0.001 0.944 ± 0.004 1.434 ± 0.005
S121 0.673 ± 0.005 0.717 ± 0.003 1.309 ± 0.01 1.473 ± 0.004
S122 0.513 ± 0.09 0.320 ± 0.003 0.887 ± 0.01 1.470 ± 0.007
S138 0.558 ± 0.01 0.423 ± 0.002 0.899 ± 0.01 1.649 ± 0.003
S140 0.717 ± 0.009 0.373 ± 0.002 1.004 ± 0.03 1.474 ± 0.004

Table 5. Overview of the fitted slopes in Fig. 17 obtained assuming
a spherical NFW potential for our test-particle streams evolved in an
axisymmetric Staeckel potential.

Stream S (∆θr,φ) S (∆θr,ϑ) S (∆Ω)

S56 0.471 ± 0.009 0.470 ± 0.005 0.436 ± 0.003
S86 0.663 ± 0.005 0.593 ± 0.006 0.677 ± 0.0008
S87 0.573 ± 0.03 0.544 ± 0.02 0.514 ± 0.004

S103 0.456 ± 0.02 0.456 ± 0.003 0.620 ± 0.0006
S116 0.393 ± 0.01 0.462 ± 0.02 0.576 ± 0.002
S118 0.299 ± 0.02 0.484 ± 0.009 0.517 ± 0.001
S121 0.690 ± 0.006 0.682 ± 0.006 0.738 ± 0.0009
S122 0.444 ± 0.1 0.609 ± 0.08 0.477 ± 0.003
S138 0.502 ± 0.03 0.538 ± 0.005 0.554 ± 0.001
S140 0.672 ± 0.008 0.614 ± 0.006 0.505 ± 0.003

Fig. 14. Frequencies computed in the limiting spherical potential for
two progenitor orbits from the test-particle simulations in the Kuzmin-
Kutuzov potential (see Fig. 9).

the right average enclosed mass (as argued by Buist & Helmi
2015). We find that the fitted slopes in angle and frequency space
deviate significantly from each other, indicating that the true po-
tential in which the streams have evolved has not been used for
the angle and frequency computations. We have explored pos-
sible correlations between slopes’ differences and orbital char-
acteristics in our stream sample that could perhaps be used to
infer the asphericity of the true potential. However, we found no
specific trends in the differences in slopes between the angle and
frequency spaces, nor between the angles in the spaces θθ − θr)
and θφ − θr).

5.2. Axisymmetric Staeckel potential with different flattening

In this section we compute the angles and frequencies for the
Kuzmin-Kutuzov potential, but now assuming a flattening q′K =
1/qK, which reverses the axis lengths aK and cK compared to the
true potential. For the simulations of Sect. 4 we used a prolate
potential, and inverting qK results in an oblate shape.

The resulting distributions in frequency and angle space are
shown in Figs. 15 and 16, and are listed in Table 4. They are
qualitatively very similar to what we saw in Sect. 5.1 and in pre-
vious figures. The frequency distributions are even more broad-
ened than when assuming a spherical potential, and for some of
the streams such as S56, also more extended (i.e. beyond the
boundaries of the box, which we retained for easier comparison,
and which is centred on the progenitor’s centre of mass). This
broadening appears to be asymmetric with respect to the progen-
itor. As in the previous section, the energy gradient in frequency
space remains almost intact while in angle space it almost cannot
be discerned.

The slopes fitted to the angle and frequency distributions dif-
fer considerably, which we for a large part can attribute to the
difficulty of the fitting in frequency space. In both angle spaces,
we see that some of the streams depict small scale wiggles, such
as streams S86, S118, and S140, which are more apparent in
θλ − θν space. This is probably because the shape of the potential
is significantly different from the true form, and from the spher-
ical shape assumed in the previous section.

5.3. Spherical approximation with incorrect radial form

We now focus on the impact of computing the actions and angles
in a spherical potential whose radial dependence is quite differ-
ent from the Kuzmin-Kutuzov potential in the spherical limit.
We explore an NFW potential that has the same enclosed mass
and mass slope at rfix = 50 kpc (see also Fig. C.1).

In Fig. 17 and Table 5 we show the resulting distribution of
these angles and frequencies for the streams evolved in the ax-
isymmetric Kuzmin-Kutuzov potential of Sect. 4. At first sight,
many of the streams look very similar to those in Fig. 13, which
corresponds to the computations assuming a spherical isochrone
mass distribution.

In frequency space, we see that some of the streams are
longer and thinner (see e.g. S140 and S118). The slopes derived
from fitting straight lines to these distributions are different from
those computed in the isochrone potential, such as for S86 and
S103. In angle space, the differences are more subtle, and the
typical difference between the fitted slopes of the isochrone and
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Fig. 15. Test-particle streams from Fig. 9–11 with the frequencies and angles in the λ − φ projections computed for a Staeckel potential with
flattening q′K = 1/qK. The colours represent the energy gradient with the most bound particles in yellow and the least bound particles in blue.

NFW cases is ∼0.05, which is comparable to the estimated error
in the fit, but also the incorrect shape of the potential may con-
tribute here. The energy gradient in angle space for the isochrone
and NFW potentials is not always the same, with the isochrone
potential showing more fluctuations in the θr direction. Over-
all we find that the frequencies are the most sensitive to the
potential, but the differences are small because the slope and
the enclosed mass at rfix = 50 kpc are equal for the NFW and
isochrone profiles. The behaviour in frequency and angle space
is only slightly worse than for the spherical isochrone potential.

5.4. The effects of self-gravity

In reality, the progenitors of streams will initially be bound by
their own self-gravity. Particles that become unbound with time
will typically be released at specific points along the orbit (close
to the pericentre), rather than continuously as modelled thus far.
This results in the leading and trailing arms being offset from
each other in configuration space (Johnston 1998) and in energy-
angular momentum space (Gibbons et al. 2014). The process of
disruption also causes particles to define a bow-tie structure in

action (and energy-angular momentum) space. Since one of our
goals is to understand the properties of streams in the cosmolog-
ical Aquarius N-body simulations, we attempt here to establish
what the effect of self-gravity is on the distribution of particles
in frequency and angle spaces.

To this end, we simulated the evolution of a 3.7×108 M� pro-
genitor for 10 Gyr on an orbit with rapo = 23.6 kpc and rperi =

10.2 kpc in a spherical NFW potential with Ms = 1.5 × 1011 M�
and rs = 12 kpc using an N-body code that uses a quadrupole
expansion to model the internal gravitational potential of the
system (Helmi & White 2001). Figure 18 shows snapshots for
t = 0 and t = 3.5 Gyr. The left panels plot the projection of the
stream on the progenitor’s orbital plane, where the red particles
correspond to those that are (still) bound. The stream has already
spread out significantly by t = 3.5 Gyr because the progenitor is
large and the orbit is rather confined to the inner regions of the
host, which results in fast evolution. By this time, the progeni-
tor has almost completely dissolved (i.e. only a few particles are
marked in red).

In the second panel we show the angle distribution initially
and at 3.5 Gyr, with the particles bound to the progenitor marked
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Fig. 16. Same as Fig. 15 but now showing the λ − ν projections.

in red. By 3.5 Gyr many wraps fill up the angle space, to which
we fitted parallel straight lines and whose slope is shown in the
inset. The frequency distribution at both times is shown in the
third column panels, which is overlaid onto the distribution at
t = 10 Gyr in grey. We learn from this that at t = 3.5 Gyr, the
distribution has reached its final (bow-tie like) shape, and the
evolution of the particles is simply governed by θ ∼ Ωt by this
point in time.

The expected gap near the progenitor in action space forms
slowly and is only subtle at the final time (see Gibbons et al.
2014, for a more detailed discussion of the process). Further-
more, we find no significant offset in configuration space be-
tween the leading and trailing arms in our simulation, nor any
epicyclic oscillations in the stream. This is most likely related to
the fast disruption of the progenitor as a consequence of its low
density contrast with respect to the host. This is quite different to
what is seen for N-body simulations of globular clusters whose
disruption process is slower because these are strongly bound
gravitational systems (Küpper et al. 2010, 2012).

At 3.5 Gyr, the distribution of angles and frequencies fol-
low each other very closely, as quantified by the slope of the
fitted straight lines in the bottom panels, and this is in agreement

with the findings of Sanders & Binney (2013b). The difference
between test-particle and N-body simulations is especially seen
in the bow-tie shape in action space and frequency space, but
it is almost absent in angle space. The dynamics of streams
is otherwise mostly the same. Furthermore, the slopes of the
straight lines along which the stream is distributed in angle
and in frequency space are the same, in agreement with the re-
sults by Sanders & Binney (2013a). Only for very massive pro-
genitors (∼1010 M�) might this picture change because of in-
teractions between the stream and the progenitor (Choi et al.
2009), or because the overall potential of the halo changes
while the progenitor system is in the process of being disrupted
(Vera-Ciro & Helmi 2013; Gómez et al. 2015).

This analysis leads us to believe that self-gravity has a neg-
ligible impact on the results presented in earlier sections of the
paper.

6. Discussion and conclusions

We have studied the behaviour of streams in fully cosmologi-
cal N-body simulations of the formation of stellar haloes from
the Aquarius project (Springel et al. 2008). These stellar haloes
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Fig. 17. Test-particle streams from Fig. 9–11 with the frequencies ∆Ωr − ∆Ωφ (top panels) and angles ∆θr − ∆θφ (middle panels) and ∆θr − ∆θϑ
(bottom panels), computed using an NFW potential that has the same slope at a fixed radius as the limiting spherical isochrone potential (see
Fig. C.1). The colours represent the energy gradient in the NFW potential. The panels have been centred on the progenitor position. The insets
indicate the fitted slopes for the approximate potential. The errors were found by bootstrapping the fit 200 times.
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Fig. 18. Projections of configuration, angle, frequency, and action space at t = 0 (top panels) and t = 3.5 Gyr (bottom panels) for an N-body
stream evolved in a spherical NFW potential. The first column shows the projection of the stream on the orbital plane of the progenitor. Particles
still bound to the progenitor are plotted in red. In the third column we have overlaid the distribution of frequencies at t = 10 Gyr in grey. In the
panels on the right, we also show the final distribution of actions at t = 10 Gyr in grey. The actions, angles and frequencies have been centred on
the coordinates of the centre of mass of the progenitor and the colours represent the energy gradient.

were produced by tagging dark matter particles in these other-
wise dark-matter only simulations according to the GALFORM
semi-analytic galaxy formation model (Cooper et al. 2010;
Lowing et al. 2015). From these haloes we selected a set of
stream-like objects and used the “tagged” particles to build up
a catalogue of stellar streams. Our interest was to understand the
behaviour of these streams, evolved in a fully cosmological time-
dependent framework, particularly when studied in action-angle
space.

Since the Aquarius haloes’ potential is not analytic, we ex-
plored as a first approximation their behaviour when a spheri-
cal NFW potential was assumed. For the best fitting NFW mass
distribution, we computed the streams’ angles and frequencies.
We found that many of the streams in the Aquarius haloes show
several wraps in angle space that appear to be on relatively
straight lines, as reported in other works on streams evolved in
static or evolving smooth potentials (Sanders & Binney 2013b;
Buist & Helmi 2015). However, in many cases these lines are not
parallel. We also found patchy features and wiggly behaviour in
angle space. In frequency space, often the structures are very
broad but relatively linear and depict some amount of irregular-
ity. The width of these streams and features are typically larger
than what we have seen before in simple simulations of streams
evolved in a smooth spherical potential.

To understand the nature of the various features, we pro-
ceeded to explore how various deviations from spherical sym-
metry could be affecting the behaviour of streams. We have
been able to demonstrate that, independently of the form of the
host potential, if the angles and frequencies are computed self-
consistently then the streams are expected to be along straight
lines in frequency and angle space. This is because the Hessian
of the Hamiltonian generally has one eigenvalue that is much
larger than the others and this dictates to a large extent the di-
rection in which the streams will expand (Tremaine 1999). The
exact direction depends also on the action distribution. These

results are valid provided the progenitor of the stream is rela-
tively compact in phase-space.

We next focused on why streams evolved in a particular po-
tential but whose angles and frequencies have been computed
in a different approximate potential are still on straight lines, as
we found for the Aquarius simulations. To this end we ran a set
of test-particle simulations in an axisymmetric prolate Kuzmin-
Kutuzov potential, which is of Staeckel form. We computed the
angles and frequencies in this potential, and found again the
characteristic linear appearance of streams in these spaces. Next,
we assumed different forms of the potential and computed the
angles and frequencies for those cases as well. We found that
even if this procedure is not self-consistent, streams are still dis-
tributed along relatively straight lines. However, in frequency
space, streams became typically thicker and somewhat distorted,
and in angle space they depict wiggly behaviour. For example,
we found that using a potential with the wrong flattening (spher-
ical or oblate, instead of prolate) has a strong effect on the size
of streams in frequency space. On the other hand, differences in
the angles and frequencies’ distributions for spherical potentials
of different radial form remained subtle provided the enclosed
mass was approximately correct within the radial extent probed
by the streams’ orbits.

In all cases, the energy gradient along the stream seems al-
most intact in frequency space (as seen for the Aquarius streams)
but clearly distorted or broken in angle space. The straight lines
that we fitted to the angle and frequency distributions differ in
slope, even when the potential is assumed to be spherical, con-
trary to expectations. This is the clearest indication that the shape
assumed for the angle computation is incorrect and does not
correspond to that of the potential in which the streams were
evolved. Finally, we also investigated what happens to the ac-
tions and angles in a simulation with self-gravity. The largest
difference is that during the disruption process of the progenitor,
the action distribution of the particles that eventually form the
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stream is altered, but otherwise the dynamics of streams are the
same as in test-particle simulations.

In conclusion, we have been able to reproduce and under-
stand most of the features seen in the approximate angles and
frequencies for the Aquarius streams, with the exception of the
“noisy” and “patchy” appearance of the streams in angle and
configuration space. We believe these can be attributed to in-
teractions of a stream with dark matter substructures, which
are known to give rise to disturbed morphologies (Bonaca et al.
2014). Such interactions may also introduce non-adiabatic time-
dependent effects on streams that lead to the formation of gaps
(Yoon et al. 2011; Carlberg 2013; Ngan & Carlberg 2014).

Finally, since the angle-frequency misalignments found for
the Aquarius streams can mostly be attributed to using the wrong
potential, this implies that they cannot be used to determine the
mass growth history of the Aquarius dark matter haloes as we
had proposed in Buist & Helmi (2015). This may be resolved
with approximate schemes to compute the actions in a triaxial
potential (e.g. Sanders & Binney 2014; Bovy 2014) and by using
the distortions of sufficiently thin streams in angle and frequency
space to further constrain the present-day potential.

A similar conclusion may be drawn for the determination
of the time-evolution of the Milky Way’s gravitational potential,
although the challenge in this case is greater. As discussed in
Buist & Helmi (2015), the ability to measure time dependence
also requires the presence of nearby thin and long streams, as
only for such streams will Gaia be able to determine their full
phase-space coordinates precisely. Clearly the first step is to have
an accurate model for the present-day mass distribution in the
Milky Way. Once this has been constructed and we are fortunate
enough to be able to exploit the presence of suitable streams,
measuring the angle-frequency misalignment to determine the
evolution of our Galaxy’s gravitational potential may become
feasible.
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Appendix A: Stream properties

In Table A.1 we list the apocentre and pericentre distances of
the orbits integrated in a spherical NFW potential as described
in Sect. 2.4. We also provide the total dark matter masses of the
progenitors with more than 500 dark matter particles for all the
streams considered in that section.

Appendix B: More streams

In Sect. 2 we showed only ten of the streams present in halo Aq-
A and Aq-D with more than 500 dark matter particles in their
progenitors. In total there are 35 streams that match our selec-
tion criteria, and the remaining 15 (5 in Aq-A and 10 in Aq-D)
are shown in Figs. B.1 and B.2. As in Figs. 4 and 5, we have
overplotted the orbits integrated into the corresponding best fit-
ting NFW spherical potential.

Appendix C: Numerical parameters
for Kuzmin-Kutuzov potential

To set the numerical values of the parameters of the axisymmet-
ric Staeckel potential used in the experiments of Sect. 4 we pro-
ceed as follows: we first set up the isochrone potential by choos-
ing a radius rfix at which the enclosed mass and its slope equals
that of the best-fitting NFW potential for the Aquarius haloes.
This ensures that around rfix the (spherically averaged) mass dis-
tributions are similar. We chose rfix = 50 kpc because most of
the streams we study are located around 50–100 kpc from the
halo centre. Having chosen rfix, we first match the slope of the
mass profile and then proceed to set the enclosed mass. The log-
arithmic slope κ is

κNFW(x) ≡
d log MNFW(x)

d log x
(C.1)

with x = r/rs and rs the scale radius of the NFW potential such
that MNFW(rs) = Ms. The condition of equal slopes at rfix is

κNFW(rfix/rs) = κiso(rfix/riso), (C.2)

which we can invert to find riso. The scale mass Miso ensures the
enclosed mass is equal at rfix

Ms
ANFW(rfix/rs)

ANFW(1)
= Miso

Aiso(rfix/riso)
Aiso(1)

, (C.3)

where Ai are the normalised radial mass profiles for the used po-
tentials. In Fig. C.1 we show the result of our fitting procedure
for halo Aq-D6. The overall mass and velocity profiles differ sig-
nificantly outside r ∼ rfix.

The next step in setting up the axisymmetric Kuzmin-
Kutuzov potential is to use Eqs. (11) to determine its character-
istic parameters. This requires some measurement of the shape
of the Aquarius haloes, and we use the axis ratios determined
using the reduced moment of inertia tensor at rfix = 50 kpc by
Vera-Ciro et al. (2011), and which closely follow the isodensity
contours. Since Aq-A and Aq-D haloes are more prolate, we de-
fine an axisymmetric equivalent of the axis ratio of the density
qρ as

qρ =
2a

b + c
, (C.4)

6 We note that the correspondence of rfix with the location of the max-
imum circular velocity for the best fitting NFW potential to halo Aq-D
is a coincidence.

where a, b, and c are the major, intermediate, and minor axis
lengths. For halo Aq-D qρ(50 kpc) = 1.53 (qρ = 1.39 when the
axis ratios b/a and c/a are determined at 100 kpc).

The density profile of the Kuzmin-Kutuzov potential is given
by (Dejonghe & de Zeeuw 1988):

ρK(λ, ν) =
MK c2

K

4π

λν + a2
K

(
λ + 3

√
λν + ν

)
(λν)3/2

(√
λ +
√
ν
)3 · (C.5)

We can use this expression to solve numerically for the value of
qK such that the isodensity-contour at R = 50 kpc has the desired
axis ratio qρ. This results in qK = 1.87 for halo Aq-D. We note
that for this value of qK, we find qρ,K = 1.44 at 100 kpc for the
Kuzmin-Kutuzov potential, which is also not too far off the value
of qρ(100 kpc) = 1.39 measured for Aq-D.

Appendix D: Fitting algorithm

When the individual wraps of a stream are sufficiently distinct in
angle space, we can fit straight lines to them. Their slopes can
then be compared to those obtained when fitting in frequency
space. In Sect. 3, we derived the angle distributions for streams
assuming a spherical potential. These distributions are rather
noisy and make the process of fitting straight lines non-trivial
and complex. Therefore, we proceed to describe now in detail
the steps that we take to measure the slopes in angle space.

In Fig. D.1 we show two examples: stream A164 and the
test-particle simulations stream S140 as they are being fitted. In
the case of the Aquarius haloes, we first use the binding energies
of the particles in the stream to find the most bound particle and
then centre angle and frequency space on this particle. If there is
no bound structure, the centre is put at the location of the high-
est density in angle space. We generously remove the progenitor
and particles in its surroundings by computing the total binding
energy with a much higher mass per particle (∼4). These bound
particles are marked in red in the top-left panel of Fig. D.1.

In the next step, we fit a straight line to the remaining parti-
cles in each independent projection of frequency space using a
simple least-squares method. We show this line for the r−φ pro-
jection of angle space in the left panels of Fig. D.1. We then bin
the data of this angle-space projection in N bins horizontally and
N/S (∆Ωφ) vertically, where N = 40 for the test-particle streams
and N = 30 for the Aquarius streams, unless there are fewer than
100 particles remaining. We then “clean” this image by empty-
ing the bins that have fewer counts than the median of non-empty
pixels. This is done twice to generate enough contrast with re-
spect to the “background” of particles between the streams for
the Sculptor progenitors, and only once for the thinner Carina
progenitors (e.g. Fig. 12).

We group the particles by connecting pixels that fall within
the pattern of Fig. D.2, which is elongated in the same direction
as the stream, which is on an angle of 45 degrees if it follows
the frequency distribution. Some parallel streams may be “con-
nected” at a single pixel, and the algorithm keeps them separate
by not combining groups that individually had more than 25 con-
nected pixels. This procedure results in the groups shown in the
third column of Fig. D.1 with different colours. It is clear from
the top row that sometimes structures are grouped together that
should not be connected, but it is difficult to completely prevent
this from happening without removing too many particles from
the streams.

We then use a least-squares fit for parallel lines with different
offsets. The result is optimised by running the full fitting proce-
dure twice, because we can then use the slope fitted to the angles
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Table A.1. Stream properties for halo Aq-A and Aq-D.

Stream rorbit, peri

(kpc)
rorbit, apo

(kpc)
MDM, progenitor

(M�)
Stream rorbit, peri

(kpc)
rorbit, apo

(kpc)
MDM, progenitor

(M�)
A98 2.5 35.5 2.0 × 108 D56 2.4 40.6 7.3 × 108

A99 6.2 60.4 1.3 × 107 D72 2.9 127.8 6.1 × 108

A104 4.5 44.5 1.2 × 109 D73 4.8 121.7 6.7 × 108

A106 8.1 41.9 1.5 × 107 D78 23.8 194.5 2.2 × 108

A107 3.4 57.6 2.9 × 107 D82 15.6 107.4 3.4 × 108

A108 12.5 107.4 5.1 × 107 D86 39.2 84.6 2.2 × 107

A112 4.5 59.8 9.5 × 107 D87 16.1 115.1 9.5 × 107

A116 3.2 89.3 1.2 × 108 D91 12.0 48.8 1.6 × 108

A140 20.5 198.1 1.8 × 108 D98 2.9 70.3 1.5 × 109

A151 35.0 210.6 1.4 × 108 D103 30.4 55.6 2.7 × 107

A153 10.7 189.1 4.7 × 107 D116 16.9 60.5 5.2 × 107

A158 33.6 173.5 7.1 × 107 D118 17.5 42.5 1.1 × 108

A163 26.5 54.6 1.7 × 107 D120 13.7 33.9 8.1 × 107

A164 15.9 87.6 6.2 × 108 D121 29.6 177.3 3.2 × 107

A171 16.3 76.3 1.1 × 108 D122 6.3 73.4 3.4 × 107

D125 3.0 33.4 1.9 × 108

D129 4.3 47.7 1.2 × 108

D137 10.7 71.8 9.1 × 106

D138 15.7 86.5 2.5 × 107

D140 7.7 102.2 3.1 × 107

found in the first iteration when binning angle space7. To esti-
mate the errors in the fitting we bootstrap the data 200 times,
which was found to be enough to get a reasonable estimate of
the errors, although this does not fully reflect the error when the
wraps in angle space overlap or if they are not on parallel lines.

7 What may also happen in this second iteration is that if stream wraps
depict discontinuities, for example but not only, after removal of the pro-
genitor bound particles, these parts are fitted separately. This explains
why some of the fitted straight lines in the figures in the main paper are
very close to each other, such as for streams D72 and D82 in Fig. 7.
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Fig. B.1. Same as Fig. 4 but with the remaining streams with at least 500 dark matter particles that were not shown in that figure.

Fig. B.2. Same as Fig. 5 but with the remaining streams with at least 500 dark matter particles that were not shown in that figure.
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Fig. C.1. Enclosed mass and circular velocity curves for the best fitting NFW profile to halo Aq-D, and the isochrone potential that matches the
enclosed mass and slope at rfix = 50 kpc.

Fig. D.1. Examples of the straight lines fitting routine for stream A164 (top panels) and the test-particle simulations’ S140. In the left panel we
show the stream in angle space with possible bound particles in red and the straight line obtained by fitting the frequency distribution. The second
panel shows the streams in bins, where the axis have been scaled such that the streams are oriented at 45 deg. The third panel shows the groupings
found by the pattern-filling algorithm. The last panel shows the resulting straight lines determined using parallel fitting.
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Fig. D.2. Pattern used to link pixels in the angle-space image of the
stream.
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