206,769 research outputs found
Characterization of interstitial stem cells in hydra by cloning
A procedure has been developed for cloning interstitial stem cells from hydra. Clones are prepared by introducing small numbers of viable cells into aggregates of nitrogen mustard-inactivated host tissue. Clones derived from added stem cells are identified after 1–2 weeks of growth by staining with toluidine blue. The incidence of clones increases with increasing input of viable cells according to one-hit Poisson statistics, indicating that clones arise from single cells. After correction for cell losses in the procedure, about 1.2% of the input cells are found to form clones. This compares with estimates from in vivo experiments of about 4% stem cells in whole hydra [David, C. N., and Gierer, A. (1974). Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J. Cell Sci. 16, 359–375.]
Differentiation of nematocytes and nerve cells in clones was analyzed by labeling precursors with [3H]thymidine and scoring labeled nerves and nematocytes 2 days later. Nine clones examined in this way contained both differentiated nerve cells and nematocytes, demonstrating that the interstitial stem cell is multipotent. This result suggests that the observed localization of nerve and nematocyte differentiation in whole hydra probably occurs at the level of stemcell determination. The observation that differentiated cells occur very early in clone development suggests that a stem cell's decision to proliferate or differentiate is regulated by shortrange feedback signals which are already saturated in young clones
A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots
This work explores a new approach in using genetic algorithm to predict RNA secondary structures with pseudoknots. Since only a small portion of most RNA structures is comprised of pseudoknots, the majority of structural elements from an optimal pseudoknot-free structure are likely to be part of the true structure. Thus seeding the genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the true structure than a randomly generated population. The genetic algorithm uses the known energy models with an additional augmentation to allow complex pseudoknots. The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase shows that it out performs some of the current popular algorithms
Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses.
Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108
A comparison of integrated testlet and constructed-response question formats
Constructed-response (CR) questions are a mainstay of introductory physics
textbooks and exams. However, because of time, cost, and scoring reliability
constraints associated with this format, CR questions are being increasingly
replaced by multiple-choice (MC) questions in formal exams. The integrated
testlet (IT) is a recently-developed question structure designed to provide a
proxy of the pedagogical advantages of CR questions while procedurally
functioning as set of MC questions. ITs utilize an answer-until-correct
response format that provides immediate confirmatory or corrective feedback,
and they thus allow not only for the granting of partial credit in cases of
initially incorrect reasoning, but furthermore the ability to build cumulative
question structures. Here, we report on a study that directly compares the
functionality of ITs and CR questions in introductory physics exams. To do
this, CR questions were converted to concept-equivalent ITs, and both sets of
questions were deployed in midterm and final exams. We find that both question
types provide adequate discrimination between stronger and weaker students,
with CR questions discriminating slightly better than the ITs. Meanwhile, an
analysis of inter-rater scoring of the CR questions raises serious concerns
about the reliability of the granting of partial credit when this traditional
assessment technique is used in a realistic (but non optimized) setting.
Furthermore, we show evidence that partial credit is granted in a valid manner
in the ITs. Thus, together with consideration of the vastly reduced costs of
administering IT-based examinations compared to CR-based examinations, our
findings indicate that ITs are viable replacements for CR questions in formal
examinations where it is desirable to both assess concept integration and to
reward partial knowledge, while efficiently scoring examinations.Comment: 14 pages, 3 figures, with appendix. Accepted for publication in
PRST-PER (August 2014
Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection
Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method 'CPModule'. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC
The use of equine chondrogenic‐induced mesenchymal stem cells as a treatment for osteoarthritis : a randomised, double‐blinded, placebo‐controlled proof‐of‐concept study
Background: There is a need to improve therapies for osteoarthritis in horses. Objectives To assess the efficacy of equine allogeneic chondrogenic-induced mesenchymal stem cells combined with equine allogeneic plasma as a novel therapy for osteoarthritis in horses.
Study design: Randomised, double-blinded, placebo-controlled experiment.
Methods: In 12 healthy horses, osteoarthritis was induced in the metacarpophalangeal joint using an osteochondral fragment-groove model. Five weeks after surgery, horses were randomly assigned to either an intra-articular injection with chondrogenic-induced mesenchymal stem cells + equine allogeneic plasma (= intervention) or with 0.9% saline solution (= control). From surgery until the study end, horses underwent a weekly joint and lameness assessment. Synovial fluid was collected for cytology and biomarker analysis before surgery and at Weeks 5, 5 + 1d, 7, 9 and 11. At Week 11, horses were subjected to euthanasia, and the metacarpophalangeal joints were evaluated macroscopically and histologically.
Results: No serious adverse events or suspected adverse drug reactions occurred during the study. A significant improvement in visual and objective lameness was seen with the intervention compared with the control. Synovial fluid displayed a significantly higher viscosity and a significantly lower glycosaminoglycan concentration in the intervention group. Other biomarkers or cytology parameters were not significantly different between the treatment groups. Significantly less wear lines and synovial hyperaemia were present in the intervention group. The amount of cartilage oligomeric matrix protein, collagen type II and glycosaminoglycans were significantly higher in the articular cartilage of the intervention group.
Main limitations: This study assessed the short-term effect of the intervention on a limited number of horses, using an osteoarthritis model. This study also included multiple statistical tests, increasing the risk of type 1 error.
Conclusions: Equine allogeneic chondrogenic-induced mesenchymal stem cells combined with equine allogeneic plasma may be a promising treatment for osteoarthritis in horses
Recommended from our members
PATTERNA: transcriptome-wide search for functional RNA elements via structural data signatures.
Establishing a link between RNA structure and function remains a great challenge in RNA biology. The emergence of high-throughput structure profiling experiments is revolutionizing our ability to decipher structure, yet principled approaches for extracting information on structural elements directly from these data sets are lacking. We present PATTERNA, an unsupervised pattern recognition algorithm that rapidly mines RNA structure motifs from profiling data. We demonstrate that PATTERNA detects motifs with an accuracy comparable to commonly used thermodynamic models and highlight its utility in automating data-directed structure modeling from large data sets. PATTERNA is versatile and compatible with diverse profiling techniques and experimental conditions
- …
