622,626 research outputs found

    Improving Einstein-Podolsky-Rosen Steering Inequalities with State Information

    Get PDF
    We discuss the relationship between entropic Einstein-Podolsky-Rosen (EPR)-steering inequalities and their underlying uncertainty relations, along with the hypothesis that improved uncertainty relations lead to tighter EPR-steering inequalities. In particular, we discuss how the intrinsic uncertainty in a mixed quantum state is used to improve existing uncertainty relations and how this information affects one's ability to witness EPR-steering. As an example, we consider the recent improvement (using a quantum memory) to the entropic uncertainty relation between pairs of discrete observables (Nat. Phys. 6, 659 (2010)) and show that a trivial substitution of the tighter bound in the steering inequality leads to contradictions, due in part to the fact that the improved bound depends explicitly on the state being measured. By considering the assumptions that enter into the development of a steering inequality, we derive correct steering inequalities from these improved uncertainty relations and find that they are identical to ones already developed (Phys. Rev. A, 87, 062103 (2013)). In addition, we consider how one can use the information about the quantum state to improve our ability to witness EPR-steering, and develop a new symmetric EPR-steering inequality as a result.Comment: 6 page

    Monogamy of Einstein-Podolsky-Rosen steering in the background of an asymptotically flat black hole

    Full text link
    We study the behavior of monogamy deficit and monogamy asymmetry for Einstein-Podolsky-Rosen steering of Gaussian states under the influence of the Hawking effect. We demonstrate that the monogamy of quantum steering shows an extreme scenario in the curved spacetime: the first part of a tripartite system cannot individually steer two other parties, but it can steer the collectivity of the remaining two parties. We also find that the monogamy deficit of Gaussian steering, a quantifier of genuine tripartite steering, are generated due to the influence of the Hawking thermal bath. Our results elucidate the structure of quantum steering in tripartite quantum systems in curved spacetime.Comment: 16 pages, 4 figure

    Role of thermal noise in tripartite quantum steering

    Full text link
    The influence of thermal noise on bipartite and tripartite quantum steering induced by a short laser pulse in a hybrid three-mode optomechanical system is investigated. The calculation is carried out under the bad cavity limit, the adiabatic approximation of a slowly varying amplitude of the cavity mode, and with the assumption of driving the cavity mode with a blue detuned strong laser pulse. Under such conditions, explicit expressions of the bipartite and tripartite steering parameters are obtained, and the concept of collective tripartite quantum steering, recently introduced by He and Reid [Phys. Rev. Lett. 111, 250403 (2013)], is clearly explored. It is found that both bipartite and tripartite steering parameters are sensitive functions of the initial state of the modes and distinctly different steering behaviour could be observed depending on whether the modes were initially in a thermal state or not. We find that the initial thermal noise is more effective in destroying the bipartite rather than the tripartite steering which, on the other hand, can persist even for a large thermal noise. For the initial vacuum state of a steered mode, the tripartite steering exists over the entire interaction time even if the steering modes are in very noisy thermal states. When the steered mode is initially in a thermal state, it can be collectively steered by the other modes. There are thresholds for the average number of the thermal photons above which the existing tripartite steering appears as the collective steering. Finally, we point out that the collective steering may provide a resource in a hybrid quantum network for quantum secret sharing protocol.Comment: 13 pages, 9 figure
    corecore