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Abstract

c 2013

@ We discuss the relationship between entropic EinsteiroBg-Rosen (EPR)-steering inequalities and their

underlying uncertainty relations along with the hypotbkékat improved uncertainty relations lead to tighter
I~ EPR-steering inequalities. In particular, we discuss Hoimtrinsic uncertainty in a mixed quantum state is
1 used to improve existing uncertainty relations and howitifermation dfects one’s ability to witness EPR-
steering. As an example, we consider the recent improvefusinig a quantum memory) to the entropic
uncertainty relation between pairs of discrete obsergaflat. Phys6, 659 (2010)) and show that a trivial
.1, substitution of the tighter bound in the steering ineqydttads to contradictions, due in part to the fact
C that the improved bound depends explicitly on the stategoeieasured. By considering the assumptions
@ that enter into the development of a steering inequality,deeve correct steering inequalities from these

improved uncertainty relations and find that they are idahto ones already developed (Phys. Rev3A,
062103 (2013)). In addition, we consider how @aa use information about the quantum state to improve our
o) ability to witness EPR-steering, and develop a new contiswariable symmetric EPR-steering inequality as
= aresult.

('B Keywords. EPR steering, entanglement, EPR-paradox, uncertairayont, entropy

(@)}
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Od 1. Introduction the state of a system can be used to improve one’s

) _ ability to withess EPR-steering.
0" Uncertainty relations are used not only to great ef-

— fect in expressing fundamental limitations of preci- EPR-steering is a form of nonlocality interme-
= 'sion measurements; they are also useful in witnes§liate between Bell-nonlocality and nonseparability
< ing entanglement through demonstrations of the EPEE]- A joint quantum system is said to exhibit EPR-
o ‘paradox([1] by the violation of EPR-steering inequal-Steering (or be EPR-steerable) if its local measure-
itied]. Since EPR-steering inequalities are derivedn€nt correlations are ficiently strong to demon-
from underlying uncertainty relations, it is natural toStrate the EPR-paradox| [1]. As a consequence of
consider whether improved uncertainty relations inEPR-steering, consider two parties, Alice and Bob,
evitably lead to improved EPR-steering inequalitiesSharing quantum systems A and B, respectively. Bob

We provide an answer to this question in this letter, a§an determine that he and Alice share entanglement
well as explore just how additional information from €ven when he does not trust Alice’s measurements

provided A and B are dficiently entangled. Bob
does this by ruling out the possibility that Alice is

reparing and sending systems to Bob, and then us-
the efect of measurement indeed cannot travel faster than IighP P 9 gsy

then the measurement uncertainties of one party, whettmartor Ihg .her knf)wledge of thofe systems to announce
they are conditioned on the outcomes of another party, eve t fabricated "measurements” she expects to be corre-
same lower bound. lated to Bob's results. In this scenario, the measure-

Preprint submitted to Physics Letters A November 5, 2018

ph]

'EPR-steering inequalities are relations illustrating,tfifa
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ment correlations across complementary observableghereQP is Q as defined in equatiofnl(2), but for ob-
(say, in both position and momentum, or in linearservables on syste. Here,H(Q) is the Shannon
and circular polarizations of light) can only be soentropy of the measurement probabilities of observ-
high. These models, in which Bob is receiving anableQ, i.e.,

unknown, but well-defined quantum state classically

correlated to Alice’s results are known as models of H(Q) = - Z P(a:) log(P(ah)). (4)

local hidden states (LHS) for Bob. When the mea- '
surement correlations across complementary obsenyereP(q;) = Tr(5 g )(cl). Similarly, H(QA, Q) is

ables is sfficiently high, Bob can rule out all LHS the Shannon entropy of the joint measurement prob-
models and verify that he and Alice must be sharingyjjities of observable§” and®8, i.e.,

entanglement.
Ruling out LHS models for Bob is done by vio- H(Q* Q®) = - Z P(g, d) log(P(af, a7)),  (5)

lating EPR-steering inequalities, i.e., inequalities de- i,j

rived from the necessary form that the joint measure-

A AB) — ~AB |~A A B B
ment probabilities must have (11) in an LHS model""her(’jp(qi - d7) = Tr(e™ 197}ql ® la7)(qj)- In ad-

(for Bob). Steering inequalities are useful not onlydition; H(QBB|Q:) is the ciondBitionaI S/Tannon entropy,
because they witness entanglement without neediffn€reH(Q"1Q") = H(Q", Q%) - H(Q"), and all log-

to perform complete state tomography: they also ve/21ithms are taken to be base 2. _
ify entanglement between two parties even when the EXa@mination of [(I) and.{3) suggests that entropic

measurements of one party are untrusted [2]. For thisPR-steering inequalities may be obtained from en-
reason, steering inequalities have been shown to fEppic uncertainty relations by a trivial substitution of

useful in entanglement-based quantum key distribeonditional entropies for marginal entropies. Indeed,
tion M]- as we shall show below, when the uncertainty bound

In some cases, improvements to uncertainty reldS State-independent, this strategy is approptate
tions lead to better EPR-steering inequalities. Fof°Ntrast, such a substitution is not necessarily appro-
example, Bialynicki-Birula and Mycielski's entropic priate when the uncertainty bound is state-dependent,

uncertainty relation|[5] for position and momen-@as We illustrate with the following example.

tum encompasses the variance-based Heisenberg unRReécently, Bertzt. al [10] developed an improved

certainty relation |__[J6] Similarly, the resulting en- entropic uncertainty relation which raises the bound

tropic EPR-steering inequalit}/[7] encompasses th@" the right hand side of{2) when the von Neumann
variance-based steering inequalify [8], permittingE"troPy of Bob’s system described by density opera-

EPR-steering to be withessed in more diverse syd0T A" is known,

tems. In spite of this particular example, however, H(QB) + H(R®) > log(Q®) + S(38). (6)

improving uncertainty relations does not necessarily B

improve steering inequalities, as we shall show.  This improved uncertainty relation is a consequence
Previously [9], we showed how a state-of Bertaet. al.’s uncertainty principle in the presence

independent entropic uncertainty relation relating @f quantum memor)m(ﬁ. With a quantum memory

pair of N-dimensional discrete observables, s@y, maximally entangled with a system to be measured,

andR, gives rise to a formulation of a correspondingthe expected outcome of a particular observable of
EPR-steering inequality between a pair of syst&ms

andB. In particular, given the uncertainty relation

2This point was made in a previous publication in which

H(Q) + H(R) > log(), (1) only state-independent uncertainty relations were cemetl
= min (;)’ (2) 3The improved uncertainty relatiof (6) has the appealing in-
L \Kglr )2 tuition that if the minimum uncertainty limit when measugia

there is a corresponding EPR-steering inequality, pure state is given_ by Io@f‘), then the minimun_1 uncertainty
limit when measuring a mixture of pure states is larger by the

H(Q®IQ + H(R®IRY) > log(Q®), (3) intrinsic uncertainty of the mixture.
2



that system can be known with arbitrary precision bythe bound of 2 bits, we would conclude that this clas-
measuring the corresponding observable of the ersically correlated separable state is not only entan-
tangled memory. The improved uncertainty relatiorgled, but EPR-steerable. This is a contradiction. To
) for single systems arises as a special case wheesolve this contradiction, we must examine the as-
the quantum memory is uncorrelated with the systeraumption of an LHS model that goes into the deriva-
to be measured. tion of entropic EPR-steering inequalities.

This state-dependent improved uncertainty rela-
tion (6) cannot be adapted into an EPR-steering in2. The LHS model assumption with theimproved
equality by the substitution of conditional entropies  uncertainty bound

for marginal ones, as doing so would lead to a con- _
tradiction. That is Given a pair of quantum systemsandB, we say

that the pair admits an LHS model f@ if B has
H(Q®IQY) + H(REIRY) # log(Q®) + S(p®). (7) @ well-defined quantum state only classically corre-
lated withA. Such a system can be considered to be
If Q andRwere mutually unbiased observables, suciEPR-local”, and admits the possibility that Alice is
that logQ) = log(N), and the subsystemsandB  preparing and sending systems to Bob and using her

were maximally mixed, so tha8(p®) = S(pB) = knowledge of those systems to announce “measure-
log(N), we would find that the substitution leads toments” correlated to what she believes Bob’s out-
the following inequality, comes will be. As such, being able to rule out such
an LHS model successfully witnesses entanglement
H(QBIQM + H(REIRY) > 2log(N), (8) between Alice and Bob even when Alice’s results are
untrustedmZ].

which is an inequality that separable states can vio- In [9], as well as in[[7], the assumption of an LHS
late. As an example, consider the maximally corremodel forB is enforced by requiring the joint mea-
lated mixed two-qubit state, i.e., the separable statsurement probabilities to take the following form,
obtained from an even mixture of the separable joint

spin-z states!)(| @ |1)(Ll and|| )] @ [T)(T]; P r®) = > PAOPEAIDPPIY). (1)
A
0 ? 0 1 Though this form bears striking resemblancéoal
pr8 = 0 3 ? 0 ph=pB = (E ?) (9) hidden variable models [[__13], there is the additional
8 8 % % 03 assumption that Bob’s measurements arise from a

quantum probability distribution (denoted by sub-
. . . script ), wherePq(r7|2) = Tr [IrPXrPlpt], and is

In this system, the alleged inequalify (8) has theformonly dependent on the details of the hidden param-

H(oBl0) + H(oBlo?) > 2 (10) eter A (governing the possible state prepared by Al-

S xmxam ice). No such assumption is imposed on Alice’s mea-

becauseS(5®) = 1 bit. Measurement in the Pauli SUrements. In this situation, we assume both that

o, basis, which is the same as the eigenbasis, givéPD's measurements are constrained by quantum un-
P(1,1) = P(,1) = 0, andP(1,1) = P(l,7) = 1 certainty relations, and that his measurement out-
b b 1) b b 2'

Since the measurement result of is completely comes are conditionally independent of Alice’s re-
correlated with the result af®, the conditional en- sults. With these assumptions, we are led to the LHS

tropy, H(cBlo%) is zero bits. Measurement in the CMiterion /9,

Pauli o basis, which is muFuaIIy qnbiasgd v.vith.re- H(QB|QA)+H(RB|F\>A) > Z P(/l)(Hq(QBM)Jqu(RBM)).
spect to ther, basis, results in a uniform distribution ~

for the joint measurement probabilities, and gives a (12)
conditional entropyH(c8|o%), of 1 bit. Since the In [@], the derivation of the entropic EPR-steering
total on the left hand side of (IL0) is one bit less thannequalities is finished by substituting Maassen and

3



Uffink’'s bound [(2) into the right hand side df{12), have a bound which when violated, rules out all pos-
giving us the steering inequalitlyl(3). sible LHS models for BobA must be zero. Knowing

To develop an improved EPR-steering inequalitythis, logQ®?) remains the lower bound for witnessing
with the improved entropic uncertainty relatidd (6),EPR-steering throughl(3), even when the st&tean
we argue that for each value of the hidden variable(d)e determined through the use of a quantum memory.
A governing the preparation of Bob’s system, the im-

proved uncertainty relation holds, 3. Using stateinformation toimprove steeringin-

B B B B equalities
H(Q"I1) + H(R®|4) > log(©2") + S(py),  (13)
Though the previous state-dependent improved
giving us the inequality, entropic uncertainty relatiofil(6) did not yield an im-
proved EPR-steering inequality, it is straightforward
H(Q®QY + H(RPIR®) = Iog(@®) + > P()S(Y),  to show that onean use information about the state
A

(14) of a quantum system to improve one’s ability to wit-
for each LHS model given byl and P(1). As it ness EPR-steering. To explore this, we note that

stands, [(T4) is an unsatisfactory steering inequalit nce.rtalnty relations can be defined as any th.Sl'
since the right-hand side retains an explicit Oleperl_aIIylmposed constraint on measurement probability

dence onl. Instead. we desire an inequalitythatdoe%ismbu“ons' Most uncertainty relations are lower

not depend on, and which, when violated, rules out ounds on measurement uncertainties, but it is also
all possible LH’S modelsfo’r Bob. In other’vvords wePossible to bound measurement uncertainties from

need to determine a minimal constant above [L_:Lh]. As explored irﬂﬂZ], upper bounds on
measurement uncertainties are used to develop sym

A = minZ P(1)S(p5), (15) Mmetric steering inequaliti&in terms of the mutual
LHS £ information, which is defined for discrete observ-
ables as:

which, with logQ?), gives the smallest possible sum
of conditional entropies that an LHS model for Bob H(Q*:Qf) = H(Q") + H(Q®) - H(Q", Q®%) (17)

can have, ]
and for continuous observables as:

H(Q®IQM + H(RBIRY) > log(Q®) + A. 1
(Q1Q7) + HRIRY) = log(@7) + (16) hOA:x8) = h(x®) + h(E) — oA, XB). (18)
When violated, [(1I6) successfully rules out all LHS
models for Bob, demonstrating EPR-steering.
In the following arguments, we show thatmust

Note that for continuous observables, the entropies
h(x*), h(xB), andh(x*, xB) are diferential entropies

be zero. From there, we see that this particular state- I, where
dependent improvement to the uncertainty relation ~
(6) has no &ect on the associated steering inequality h(x) = - deP(X) log(o(X)), (19)

()}

Consider that the sum being minimizedAnis a q bl
weighted sum of von Neumann entropi&gp?), of om variablex. )
the states Bob is receiving from Alice. These en- In [@], we US?d the fact that the discrete entropy
tropies, like all von Neumann entropes must take vaIgf anN-dimensional system is no larger than INg(
ues between zero and ldd¢). Since Alice is free
to send any distribution of stat&z,? 1o Bob, the 4Symmetric steering inequalities are steering inequalitie
weighted sum of entropies can also take any valydat are symmetric between parties. As such, the violatian o

. . symmetric steering inequality rules out models of locadeial
between zero and loly), the lower limit being when states for both Alice and Bob, allowing both of them to ver-

Alice is sending to Bob a distribution of pure statessy entanglement even when neither of them trusts each ‘sther
(with zero von Neumann entropies). Thus in order taneasurements (though they trust their own).

4

andp(X) is the probability density of continuous ran-




to develop symmetric EPR-steering inequalities usnever more than the mutual information between the
ing the discrete mutual information. From the condi-continuous variables themselvégx* : xB)) [@].

tional steering inequality {3), we developed the sym-

metric steering inequality, H(X": XB) + H(K”:KB) < max log(20o). (25)

N2

H(Q": Q®) + H(R*:R®) < maxlo (—) 20

(@:Q7 ( ) i=(A.B} g Ql (20) 4. Conclusion

For continuous observables, however, there is no . .
: I We have shown that even substantially improved

known state-independent upper limit to the entropy.

. . _’uncertainty relations do not necessarily lead to im-
We can attempt to derive a symmetric EPR-steerln%roved EPR-steering inequalities when these im-

inequality in the same fashion for continuous vari- Berthis is d h
ables bu subtracting Walboset. al’s [ﬂ] conditonal provemen_ts are state-dependerithis is due to the
entropic steering inequality, fact, that in order to rule ogt all LHS mgdels, one
must find the lowest possible bound given by an
h(x®x") + h(k®|k*) > log(re), (21) LHS model and use that in constructing a valid en-
tropic EPR-steering inequality. However, we have
from the sum of marginal entropi@$x®) + h(kB), but  also shown how onean use state-dependent infor-
since this sum of marginal entropies is unbounded fomation to improve capabilities of witnessing EPR-
continuous variables, the resulting sum of mutual insteering, and have developed the symmetric steering
formationsh(x*: xB) + h(k”:kB), is also unbounded. inequality [24) as a result. In addition to finding this
However, by using additional information about thelowest possible bound for Beréh al’s improved un-
state of the system, we can form an upper bound. certainty relation[(6), we've also shown how to find
To find an upper bound for the sum of mutual in-this lowest possible bound in general. This will per-
formations, we use the fact that knowledge of meamit future improvements to uncertainty relations to
surement statistics allows one to further constrain thbe easily incorporated into existing EPR-steering in-
measurement probability distributions. In particu-equalities |Ib]. Futhermore, we've shown why ad-
lar, we can bound from above thef@irential entropy ditional consideration must be taken in developing

h(x) if we know the variance2, [B,@], so that EPR-steering inequalities from state-dependent un-
certainty relations.
h(x) < 1 log(2rec?), (22) We gratefully acknowledge support from DARPA
2 DSO under grant numbers W911NR-10-1-0404 and
giving us the relation, W31P4Q-12-1-0015. CJB acknowledges support

from ARO WO911NF-09-1-0385 and NSF PHY-
h(x?) + h(k®) < log(2re oyeoye). (23)  1203931.
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