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Improving Einstein-Podolsky-Rosen Steering Inequalities with State
Information

James Schneelocha, Curtis J. Broadbenta,b, John C. Howella

aDepartment of Physics and Astronomy, University of Rochester, Rochester, NY 14627
bRochester Theory Center, University of Rochester, Rochester, NY 14627

Abstract

We discuss the relationship between entropic Einstein-Podolsky-Rosen (EPR)-steering inequalities and their
underlying uncertainty relations along with the hypothesis that improved uncertainty relations lead to tighter
EPR-steering inequalities. In particular, we discuss how the intrinsic uncertainty in a mixed quantum state is
used to improve existing uncertainty relations and how thisinformation affects one’s ability to witness EPR-
steering. As an example, we consider the recent improvement(using a quantum memory) to the entropic
uncertainty relation between pairs of discrete observables (Nat. Phys.6, 659 (2010)) and show that a trivial
substitution of the tighter bound in the steering inequality leads to contradictions, due in part to the fact
that the improved bound depends explicitly on the state being measured. By considering the assumptions
that enter into the development of a steering inequality, wederive correct steering inequalities from these
improved uncertainty relations and find that they are identical to ones already developed (Phys. Rev. A,87,
062103 (2013)). In addition, we consider how onecan use information about the quantum state to improve our
ability to witness EPR-steering, and develop a new continuous variable symmetric EPR-steering inequality as
a result.

Keywords: EPR steering, entanglement, EPR-paradox, uncertainty relations, entropy

1. Introduction

Uncertainty relations are used not only to great ef-
fect in expressing fundamental limitations of preci-
sion measurements; they are also useful in witness-
ing entanglement through demonstrations of the EPR
paradox [1] by the violation of EPR-steering inequal-
ities1. Since EPR-steering inequalities are derived
from underlying uncertainty relations, it is natural to
consider whether improved uncertainty relations in-
evitably lead to improved EPR-steering inequalities.
We provide an answer to this question in this letter, as
well as explore just how additional information from

1EPR-steering inequalities are relations illustrating that, if
the effect of measurement indeed cannot travel faster than light,
then the measurement uncertainties of one party, whether ornot
they are conditioned on the outcomes of another party, have the
same lower bound.

the state of a system can be used to improve one’s
ability to witness EPR-steering.

EPR-steering is a form of nonlocality interme-
diate between Bell-nonlocality and nonseparability
[2]. A joint quantum system is said to exhibit EPR-
steering (or be EPR-steerable) if its local measure-
ment correlations are sufficiently strong to demon-
strate the EPR-paradox [1]. As a consequence of
EPR-steering, consider two parties, Alice and Bob,
sharing quantum systems A and B, respectively. Bob
can determine that he and Alice share entanglement
even when he does not trust Alice’s measurements
provided A and B are sufficiently entangled. Bob
does this by ruling out the possibility that Alice is
preparing and sending systems to Bob, and then us-
ing her knowledge of those systems to announce
fabricated ”measurements” she expects to be corre-
lated to Bob’s results. In this scenario, the measure-
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ment correlations across complementary observables
(say, in both position and momentum, or in linear
and circular polarizations of light) can only be so
high. These models, in which Bob is receiving an
unknown, but well-defined quantum state classically
correlated to Alice’s results are known as models of
local hidden states (LHS) for Bob. When the mea-
surement correlations across complementary observ-
ables is sufficiently high, Bob can rule out all LHS
models and verify that he and Alice must be sharing
entanglement.

Ruling out LHS models for Bob is done by vio-
lating EPR-steering inequalities, i.e., inequalities de-
rived from the necessary form that the joint measure-
ment probabilities must have (11) in an LHS model
(for Bob). Steering inequalities are useful not only
because they witness entanglement without needing
to perform complete state tomography; they also ver-
ify entanglement between two parties even when the
measurements of one party are untrusted [2]. For this
reason, steering inequalities have been shown to be
useful in entanglement-based quantum key distribu-
tion [4].

In some cases, improvements to uncertainty rela-
tions lead to better EPR-steering inequalities. For
example, Białynicki-Birula and Mycielski’s entropic
uncertainty relation [5] for position and momen-
tum encompasses the variance-based Heisenberg un-
certainty relation [6]. Similarly, the resulting en-
tropic EPR-steering inequality [7] encompasses the
variance-based steering inequality [8], permitting
EPR-steering to be witnessed in more diverse sys-
tems. In spite of this particular example, however,
improving uncertainty relations does not necessarily
improve steering inequalities, as we shall show.

Previously [9], we showed how a state-
independent entropic uncertainty relation relating a
pair of N-dimensional discrete observables, say,Q̂
andR̂, gives rise to a formulation of a corresponding
EPR-steering inequality between a pair of systemsA
andB. In particular, given the uncertainty relation

H(Q) + H(R) ≥ log(Ω), (1)

: Ω ≡ min
i, j

( 1
|〈qi|r j〉|

2

)

, (2)

there is a corresponding EPR-steering inequality,

H(QB|QA) + H(RB|RA) ≥ log(ΩB), (3)

whereΩB isΩ as defined in equation (2), but for ob-
servables on systemB. Here,H(Q) is the Shannon
entropy of the measurement probabilities of observ-
ableQ̂, i.e.,

H(Q) ≡ −
∑

i

P(qi) log(P(qi)), (4)

whereP(qi) ≡ Tr(ρ̂ |qi〉〈qi|). Similarly, H(QA,QB) is
the Shannon entropy of the joint measurement prob-
abilities of observableŝQA andQ̂B, i.e.,

H(QA,QB) ≡ −
∑

i, j

P(qA
i , q

B
j ) log(P(qA

i , q
B
j )), (5)

whereP(qA
i , q

B
j ) ≡ Tr(ρ̂AB |qA

i 〉〈q
A
i | ⊗ |q

B
j 〉〈q

B
j |). In ad-

dition,H(QB|QA) is the conditional Shannon entropy,
whereH(QB|QA) = H(QA,QB)− H(QA), and all log-
arithms are taken to be base 2.

Examination of (1) and (3) suggests that entropic
EPR-steering inequalities may be obtained from en-
tropic uncertainty relations by a trivial substitution of
conditional entropies for marginal entropies. Indeed,
as we shall show below, when the uncertainty bound
is state-independent, this strategy is appropriate2. In
contrast, such a substitution is not necessarily appro-
priate when the uncertainty bound is state-dependent,
as we illustrate with the following example.

Recently, Bertaet. al [10] developed an improved
entropic uncertainty relation which raises the bound
on the right hand side of (2) when the von Neumann
entropy of Bob’s system described by density opera-
tor ρ̂B is known,

H(QB) + H(RB) ≥ log(ΩB) + S (ρ̂B). (6)

This improved uncertainty relation is a consequence
of Bertaet. al.’s uncertainty principle in the presence
of quantum memory [10]3. With a quantum memory
maximally entangled with a system to be measured,
the expected outcome of a particular observable of

2This point was made in a previous publication in which
only state-independent uncertainty relations were considered
[9].

3The improved uncertainty relation (6) has the appealing in-
tuition that if the minimum uncertainty limit when measuring a
pure state is given by log(ΩB), then the minimum uncertainty
limit when measuring a mixture of pure states is larger by the
intrinsic uncertainty of the mixture.
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that system can be known with arbitrary precision by
measuring the corresponding observable of the en-
tangled memory. The improved uncertainty relation
(6) for single systems arises as a special case when
the quantum memory is uncorrelated with the system
to be measured.

This state-dependent improved uncertainty rela-
tion (6) cannot be adapted into an EPR-steering in-
equality by the substitution of conditional entropies
for marginal ones, as doing so would lead to a con-
tradiction. That is,

H(QB|QA) + H(RB|RA) � log(ΩB) + S (ρ̂B). (7)

If Q̂ andR̂ were mutually unbiased observables, such
that log(Ω) = log(N), and the subsystemsA and B
were maximally mixed, so thatS (ρ̂A) = S (ρ̂B) =
log(N), we would find that the substitution leads to
the following inequality,

H(QB|QA) + H(RB|RA) ≥ 2 log(N), (8)

which is an inequality that separable states can vio-
late. As an example, consider the maximally corre-
lated mixed two-qubit state, i.e., the separable state
obtained from an even mixture of the separable joint
spin-z states|↑〉〈↑| ⊗ |↓〉〈↓| and|↓〉〈↓| ⊗ |↑〉〈↑|;

ρ̂AB
=































0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 0































: ρ̂A
= ρ̂B

=

(

1
2 0
0 1

2

)

. (9)

In this system, the alleged inequality (8) has the form

H(σB
z |σ

A
z ) + H(σB

x |σ
A
x ) ≥ 2, (10)

becauseS (ρ̂B) = 1 bit. Measurement in the Pauli
σz basis, which is the same as the eigenbasis, gives
P(↑, ↑) = P(↓, ↓) = 0, andP(↑, ↓) = P(↓, ↑) = 1

2.
Since the measurement result of ˆσA

z is completely
correlated with the result of ˆσB

z , the conditional en-
tropy, H(σB

z |σ
A
z ) is zero bits. Measurement in the

Pauliσx basis, which is mutually unbiased with re-
spect to theσz basis, results in a uniform distribution
for the joint measurement probabilities, and gives a
conditional entropy,H(σB

x |σ
A
x ), of 1 bit. Since the

total on the left hand side of (10) is one bit less than

the bound of 2 bits, we would conclude that this clas-
sically correlated separable state is not only entan-
gled, but EPR-steerable. This is a contradiction. To
resolve this contradiction, we must examine the as-
sumption of an LHS model that goes into the deriva-
tion of entropic EPR-steering inequalities.

2. The LHS model assumption with the improved
uncertainty bound

Given a pair of quantum systemsA andB, we say
that the pair admits an LHS model forB if B has
a well-defined quantum state only classically corre-
lated withA. Such a system can be considered to be
“EPR-local”, and admits the possibility that Alice is
preparing and sending systems to Bob and using her
knowledge of those systems to announce “measure-
ments” correlated to what she believes Bob’s out-
comes will be. As such, being able to rule out such
an LHS model successfully witnesses entanglement
between Alice and Bob even when Alice’s results are
untrusted [2].

In [9], as well as in [7], the assumption of an LHS
model forB is enforced by requiring the joint mea-
surement probabilities to take the following form,

P(rA
i , r

B
j ) =

∑

λ

P(λ)P(rA
i |λ)Pq(r

B
j |λ). (11)

Though this form bears striking resemblance tolocal
hidden variable models [3], there is the additional
assumption that Bob’s measurements arise from a
quantum probability distribution (denoted by sub-
script q), wherePq(rB

j |λ) ≡ Tr
[

|rB
j 〉〈r

B
j |ρ̂

B
λ

]

, and is
only dependent on the details of the hidden param-
eterλ (governing the possible state prepared by Al-
ice). No such assumption is imposed on Alice’s mea-
surements. In this situation, we assume both that
Bob’s measurements are constrained by quantum un-
certainty relations, and that his measurement out-
comes are conditionally independent of Alice’s re-
sults. With these assumptions, we are led to the LHS
criterion [7, 9],

H(QB|QA)+H(RB|RA) ≥
∑

λ

P(λ)
(

Hq(Q
B|λ)+Hq(R

B|λ)
)

.

(12)
In [9], the derivation of the entropic EPR-steering
inequalities is finished by substituting Maassen and

3



Uffink’s bound (2) into the right hand side of (12),
giving us the steering inequality (3).

To develop an improved EPR-steering inequality,
with the improved entropic uncertainty relation (6),
we argue that for each value of the hidden variable(s)
λ governing the preparation of Bob’s system, the im-
proved uncertainty relation holds,

H(QB|λ) + H(RB|λ) ≥ log(ΩB) + S (ρ̂B
λ), (13)

giving us the inequality,

H(QB|QA) + H(RB|RA) ≥ log(ΩB) +
∑

λ

P(λ)S (ρ̂B
λ ),

(14)
for each LHS model given byλ and P(λ). As it
stands, (14) is an unsatisfactory steering inequality
since the right-hand side retains an explicit depen-
dence onλ. Instead, we desire an inequality that does
not depend onλ, and which, when violated, rules out
all possible LHS models for Bob. In other words, we
need to determine a minimal constant∆,

∆ ≡ min
LHS

∑

λ

P(λ)S (ρ̂B
λ ), (15)

which, with log(ΩB), gives the smallest possible sum
of conditional entropies that an LHS model for Bob
can have,

H(QB|QA) + H(RB|RA) ≥ log(ΩB) + ∆. (16)

When violated, (16) successfully rules out all LHS
models for Bob, demonstrating EPR-steering.

In the following arguments, we show that∆ must
be zero. From there, we see that this particular state-
dependent improvement to the uncertainty relation
(6) has no effect on the associated steering inequality
(3).

Consider that the sum being minimized in∆ is a
weighted sum of von Neumann entropies,S (ρ̂B

λ
), of

the states Bob is receiving from Alice. These en-
tropies, like all von Neumann entropes must take val-
ues between zero and log(N). Since Alice is free
to send any distribution of states ˆρB

λ
to Bob, the

weighted sum of entropies can also take any value
between zero and log(N), the lower limit being when
Alice is sending to Bob a distribution of pure states
(with zero von Neumann entropies). Thus in order to

have a bound which when violated, rules out all pos-
sible LHS models for Bob,∆must be zero. Knowing
this, log(ΩB) remains the lower bound for witnessing
EPR-steering through (3), even when the state ˆρB can
be determined through the use of a quantum memory.

3. Using state information to improve steering in-
equalities

Though the previous state-dependent improved
entropic uncertainty relation (6) did not yield an im-
proved EPR-steering inequality, it is straightforward
to show that onecan use information about the state
of a quantum system to improve one’s ability to wit-
ness EPR-steering. To explore this, we note that
uncertainty relations can be defined as any physi-
cally imposed constraint on measurement probability
distributions. Most uncertainty relations are lower
bounds on measurement uncertainties, but it is also
possible to bound measurement uncertainties from
above [11]. As explored in [9, 12], upper bounds on
measurement uncertainties are used to develop sym-
metric steering inequalities4 in terms of the mutual
information, which is defined for discrete observ-
ables as:

H(QA : QB) ≡ H(QA) + H(QB) − H(QA,QB) (17)

and for continuous observables as:

h(xA : xB) ≡ h(xA) + h(xB) − h(xA, xB). (18)

Note that for continuous observables, the entropies
h(xA), h(xB), andh(xA, xB) are differential entropies
[13], where

h(x) ≡ −
∫

dx ρ(x) log(ρ(x)), (19)

andρ(x) is the probability density of continuous ran-
dom variablex.

In [9], we used the fact that the discrete entropy
of anN-dimensional system is no larger than log(N)

4Symmetric steering inequalities are steering inequalities
that are symmetric between parties. As such, the violation of a
symmetric steering inequality rules out models of local hidden
states for both Alice and Bob, allowing both of them to ver-
ify entanglement even when neither of them trusts each other’s
measurements (though they trust their own).

4



to develop symmetric EPR-steering inequalities us-
ing the discrete mutual information. From the condi-
tional steering inequality (3), we developed the sym-
metric steering inequality,

H(QA : QB) + H(RA :RB) ≤ max
i={A,B}

log
(N2

Ωi

)

. (20)

For continuous observables, however, there is no
known state-independent upper limit to the entropy.
We can attempt to derive a symmetric EPR-steering
inequality in the same fashion for continuous vari-
ables bu subtracting Walbornet. al’s [7] conditonal
entropic steering inequality,

h(xB|xA) + h(kB|kA) ≥ log(πe), (21)

from the sum of marginal entropiesh(xB)+h(kB), but
since this sum of marginal entropies is unbounded for
continuous variables, the resulting sum of mutual in-
formations,h(xA : xB) + h(kA :kB), is also unbounded.
However, by using additional information about the
state of the system, we can form an upper bound.

To find an upper bound for the sum of mutual in-
formations, we use the fact that knowledge of mea-
surement statistics allows one to further constrain the
measurement probability distributions. In particu-
lar, we can bound from above the differential entropy
h(x) if we know the varianceσ2

x, [5, 13], so that

h(x) ≤
1
2

log(2πeσ2
x), (22)

giving us the relation,

h(xB) + h(kB) ≤ log(2πe σxBσkB). (23)

Subtracting this inequality from (21) and symmetriz-
ing gives us the inequality

h(xA : xB) + h(kA :kB) ≤ max
i={A,B}

log(2σxiσki), (24)

which we make symmetric by taking the largest
bound between Alice and Bob’s measurements.

Incidentally, this leads directly to an experimen-
tally tenable symmetric steering inequality using dis-
crete approximations to the continuous mutual infor-
mations similar to the one in [12] by noting that the
mutual information between the discrete approxima-
tions of two continuous variables, (H(XA : XB)), is

never more than the mutual information between the
continuous variables themselves (h(xA : xB)) [14].

H(XA : XB) + H(KA : KB) ≤ max
i={A,B}

log(2σxiσki). (25)

4. Conclusion

We have shown that even substantially improved
uncertainty relations do not necessarily lead to im-
proved EPR-steering inequalities when these im-
provements are state-dependent5. This is due to the
fact, that in order to rule out all LHS models, one
must find the lowest possible bound given by an
LHS model and use that in constructing a valid en-
tropic EPR-steering inequality. However, we have
also shown how onecan use state-dependent infor-
mation to improve capabilities of witnessing EPR-
steering, and have developed the symmetric steering
inequality (24) as a result. In addition to finding this
lowest possible bound for Bertaet. al’s improved un-
certainty relation (6), we’ve also shown how to find
this lowest possible bound in general. This will per-
mit future improvements to uncertainty relations to
be easily incorporated into existing EPR-steering in-
equalities [9]. Futhermore, we’ve shown why ad-
ditional consideration must be taken in developing
EPR-steering inequalities from state-dependent un-
certainty relations.

We gratefully acknowledge support from DARPA
DSO under grant numbers W911NR-10-1-0404 and
W31P4Q-12-1-0015. CJB acknowledges support
from ARO W911NF-09-1-0385 and NSF PHY-
1203931.
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