2,062,917 research outputs found

    Regression sampling in statistical auditing

    Get PDF
    Auditing;Regression Analysis;accountancy

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Optimum Statistical Estimation with Strategic Data Sources

    Full text link
    We propose an optimum mechanism for providing monetary incentives to the data sources of a statistical estimator such as linear regression, so that high quality data is provided at low cost, in the sense that the sum of payments and estimation error is minimized. The mechanism applies to a broad range of estimators, including linear and polynomial regression, kernel regression, and, under some additional assumptions, ridge regression. It also generalizes to several objectives, including minimizing estimation error subject to budget constraints. Besides our concrete results for regression problems, we contribute a mechanism design framework through which to design and analyze statistical estimators whose examples are supplied by workers with cost for labeling said examples

    Clarify: Software for Interpreting and Presenting Statistical Results

    Get PDF
    Clarify is a program that uses Monte Carlo simulation to convert the raw output of statistical procedures into results that are of direct interest to researchers, without changing statistical assumptions or requiring new statistical models. The program, designed for use with the Stata statistics package, offers a convenient way to implement the techniques described in: Gary King, Michael Tomz, and Jason Wittenberg (2000). "Making the Most of Statistical Analyses: Improving Interpretation and Presentation." American Journal of Political Science 44, no. 2 (April 2000): 347-61. We recommend that you read this article before using the software. Clarify simulates quantities of interest for the most commonly used statistical models, including linear regression, binary logit, binary probit, ordered logit, ordered probit, multinomial logit, Poisson regression, negative binomial regression, weibull regression, seemingly unrelated regression equations, and the additive logistic normal model for compositional data. Clarify Version 2.1 is forthcoming (2003) in Journal of Statistical Software.

    Statistical Modeling of Epistasis and Linkage Decay using Logic Regression

    Get PDF
    Logic regression has been recognized as a tool that can identify and model non-additive genetic interactions using Boolean logic groups. Logic regression, TASSEL-GLM and SAS-GLM were compared for analytical precision using a previously characterized model system to identify the best genetic model explaining epistatic interaction of vernalization-sensitivity in barley. A genetic model containing two molecular markers identified in vernalization response in barley was selected using logic regression while both TASSEL-GLM and SAS-GLM included spurious associations in their models. The results also suggest the logic regression can be used to identify dominant/recessive relationships between epistatic alleles through its use of conjugate
operators
    corecore