Clarify: Software for Interpreting
and Presenting Statistical Results

Michael Tomz Jason Wittenberg Gary King!

January 5, 2003

!Tomz: Department of Political Science, Stanford University, Encina Hall, Stanford, CA 94305-6044,
email tomz@stanford.edu; Wittenberg: Department of Political Science, University of Wisconsin, Madison,
1050 Bascom Mall, 221 North Hall, Madison, WI, 53706, email witty@polisci.wisc.edu; King: Center
for Basic Research in the Social Sciences, 34 Kirkland Street, Harvard University, Cambridge MA 02138,
email King@Harvard.Edu, website http://GKing.Harvard.Edu. €larify is copyrighted, but you may copy
and distribute this program provided that no charge is made and the copy is identical to the original. To
request an exception, please contact Michael Tomz.

https://core.ac.uk/display/6303179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3
2 Software requirements 3
3 How to Install Clarify For the First Time 3
3.1 Installing on Computers that are Connected to the Internet 3
3.2 Installing on Computers that are Not Connected to the Internet 4
4 How to update Clarify 5
4.1 Updating from Version 2.0 or later 5
4.2 Updating from Version 1.2x or earlier 5
5 What Clarify Does 5
6 What’s new in Clarify 2.X7? 6
7 A Simple Example 7
8 The Main Commands 8
8.1 estSImp e e 8
8.2 setX . . . 10
8.3 SINQL . . .« v e e e e e 14
9 Frequently Asked Questions 19
10 User-Contributed Modules 23
11 Formulae - A Peek Under the Hood 24
11.1 Algorithms for estsimp 24

11.2 Algorithms for setx

11.3 Algorithms for simqgi

12 References

13 Acknowledgements

29

1 Introduction

Clarify is a program that uses Monte Carlo simulation to convert the raw output of statistical proce-
dures into results that are of direct interest to researchers, without changing statistical assumptions
or requiring new statistical models. The program, designed for use with the Stata statistics package,
offers a convenient way to implement the techniques described in:

Gary King, Michael Tomz, and Jason Wittenberg (2000). “Making the Most of Sta-
tistical Analyses: Improving Interpretation and Presentation.” American Journal of
Political Science 44, no. 2 (April 2000): 347—61.

We recommend that you read this article before using the software.

Clarify simulates quantities of interest for the most commonly used statistical models, includ-
ing linear regression, binary logit, binary probit, ordered logit, ordered probit, multinomial logit,
Poisson regression, negative binomial regression, weibull regression, seemingly unrelated regression
equations, and the additive logistic normal model for compositional data. €larify Version 2.1 is
forthcoming (2003) in Journal of Statistical Software.

2 Software requirements

Clarify works in conjunction with Stata Statistical Software, produced by Stata Corporation. €larify
will run on any platform (Windows, Unix, or Macintosh) where Stata is installed. You must have
Stata 6.0 or later to run €larify. To obtain a copy of Stata or learn more about the software, visit
http://wuw.stata.com or send email to stata@stata.com.

3 How to Install €larify For the First Time

If you do not have a previous version of €larify on your personal computer or your network, there
are two ways to install the software.

3.1 Installing on Computers that are Connected to the Internet

To install €larify 2.1 for use with a personal copy of Stata, launch Stata and then type:

net from http://gking.harvard.edu/clarify/
net install clarify

To install €larify for use with a networked copy of Stata, launch Stata and then type:

net from http://gking.harvard.edu/clarify/
net set ado SITE
net install clarify

In either case, the following files will be installed on your computer: estsimp.ado, estsimp.hlp,
setx.ado, setx.hlp, simqi.ado, simqi.hlp, sumgqi.ado, sumqi.hlp, tlogit.ado, tlogit.hlp. Note that
these files will be installed onto your adopath, the path where Stata searches for the files it needs.
If you ever want to remove these files, simply type ado uninstall clarify

3.2 Installing on Computers that are Not Connected to the Internet

Download clarify.zip from http://gking.harvard.edu and copy that file to a floppy disk.
Then insert the floppy into the disk drive of the machine that is not connected to the internet.
Copy clarify.zip into a temporary directory or folder on the hard disk, and use a utility such as
pkunzip (available for the PC at http://www.pkware.com) or Stufflt (available for the MacIntosh
at http://www.aladdinsys.com/expander/index.html) to extract the files into your temporary
directory. Finally, launch Stata and type the following commands from within Stata:

net from <temporary path designator>
net install clarify

Here, replace <temporary path designator> with the path to the temporary directory or folder
where you extracted the contents of clarify.zip. Thus, for example, if the archive were copied
and opened into the c:\temp folder on a Windows machine, the appropriate installation commands
would be:

net from c:\temp
net install clarify

On a Macintosh, if you copied clarify.zip into a temporary folder called TEMPFOLDER, you
could install the program by typing:

net from :TEMPFOLDER
net install clarify

4 How to update Clarify

There are two ways to update C€larify. The choice depends on which version you currently have on
your computer or network.

4.1 Updating from Version 2.0 or later

Once you've installed version 2.0 or later on your computer, it should be easy to update the program
as new releases become available. If you have a personal copy of Stata, launch Stata and then type:

net from http://gking.harvard.edu/clarify/
net install clarify, replace

To update the copy on a network, launch Stata and then type:

net from http://gking.harvard.edu/clarify/
net set ado SITE
net install clarify, replace

4.2 Updating from Version 1.2x or earlier

If you are using a version of C€larify released before June 2001, manually delete the following
files from your Stata adopath, working directory, or network: estsimp.ado, estsimp.hlp, setx.ado,
setx.hlp, simqi.ado, simqi.hlp, sumgqi.ado, sumgqi.hlp. Once you have done this, you may install
Clarify according to the directions in Section 3.

5 What Clarify Does

Clarify uses stochastic simulation techniques to help researchers interpret and present their statis-
tical results. It uses whatever statistical model you have chosen and, as such, changes no statistical
assumptions. As a first step, the program draws simulations of the main and ancillary parameters
(7) from their asymptotic sampling distribution, in most cases a multivariate normal with mean
equal to the vector of parameter estimates (¥) and variance equal to the variance-covariance matrix
of estimates V(4).! Thus,

A

7~ N (3.96)

!There are two exceptions: the variance parameters for sureg, drawn from an inverse Wishart distribution; and
the variance for regress, drawn from an inverse x? distribution. For details, see section 11.

By default the program draws M = 1000 sets of simulated parameters, which should be sufficient
for most applications.

Next, Clarify converts the simulated parameters into substantively interesting quantities, such as
predicted values, expected values, or first differences. The user need only choose real or hypothetical
values for the explanatory variables (the X’s) and indicate which quantities should be calculated,
conditional on those X’s. The program allows researchers to calculate virtually any quantity that
would shed light on a particular problem.

Clarify 2.1 simulates quantities of interest for the most commonly used statistical models, includ-
ing linear regression, binary logit, binary probit, ordered logit, ordered probit, multinomial logit,
Poisson regression, negative binomial regression, weibull regression, seemingly unrelated regression
equations, and compositional data.

6 What’s new in Clarify 2.X7?
Clarify 2.0 includes a number of enhancements over previous versions, including;:

e Support for more models, including weibull regression, seemingly unrelated regression equa-
tions, and the additive logistic normal model for compositional data.

e The ability to apply standard transformations — such as natural logs and exponents — to
dependent variables, estimate a model, and then reverse those transformations when inter-
preting the results.

e Compatibility with Amelia. If you use multiple imputation to correct for problems with
missing values, Clarify will analyze all the multiply imputed data sets, appropriately combine
the results, and compute your quantity of interest automatically. (For information on the
software program Amelia, see http://GKing.Harvard.Edu).

e An option to generate antithetical simulations, which guarantees that the mean of the sim-
ulated parameters equals the vector of point estimates, 4, and usually reduces Monte Carlo
variance.

e More powerful commands for setting the values of the explanatory variables (the X’s), using
either single or multiply-imputed datasets to compute descriptive statistics.

e The ability to re-display the previous point estimates by entering the estsimp command
without any arguments.

e The option in the estsimp command to drop previously simulated parameters.

Clarify 2.1 corrects two bugs in estsimp. The first concerns the simulation of parameters for the
mlogit, nbreg, and sureg models. The second concerns the use of regress on multiply imputed
datasets.

For automatic notifications (via email) of updates to €larify, or to subscribe to the Clarify listserv,
see http://GKing.Harvard.Edu/stats.shtml.

7 A Simple Example

Clarify is based on three simple commands:

estsimp (estimates the model and simulates its parameters)
setx (sets values of Xs before simulating quantities of interest)
simqi (simulates quantities of interest)

In general, the commands should be run in that order, although it is often useful to call setx and
simqi many times after running estsimp. Clarify also contains two minor commands: sumgi and
tlogit. sumqi assists in summarizing quantities of interest that have been saved to the dataset.
tlogit applies the logistic transformation to one or more variables. For instructions on using these
commands, consult the on-line help file. All €larify commands can be run interactively at the Stata
command line or in batch mode by using a Stata do-file.

Each command contains many options, which we describe in Section 8 of this manual. Here, we
offer a simple example designed to show how C€larify can be used. With a dataset loaded into
memory, type the following 3 commands:

estsimp logit Y X1 X2 /* Estimate a logit and simulate its parameters */
setx mean /* Set X’s to their means. */
simqi /* Report Pr(Y=1) conditional on the X’s */

Each of these commands performs a particular operation, which we summarize here. A more
detailed discussion appears in Section 8.

estsimp logit Y X1 X2 Clarify works by capturing and interpreting the statistical results that
Stata produces when estimating a particular model. To use €larify, insert the word estsimp
at the beginning of an estimation command that you would normally run in Stata. In this
example, the built-in Stata command is logit, the binary dependent variable is Y, and
the explanatory variables are X1, X2, and a constant. Unless the user specifies otherwise,
estsimp will save the simulated parameters as new variables bearing the names b1, b2, and
b3, which will hold simulations of the coefficients on X1, X2, as well as the constant term.

If any of the variables b1 through b3 already exist in the dataset, €larify will ask the user to
delete those variables or choose different names for the simulations.

setx mean The setx command allows the user to choose a real or hypothetical value for each
explanatory variable before computing quantities of interest. In this example, the command
setx mean sets each X equal to its average value.

simqi The simgqi command computes and reports quantities of interest and associated measures
of uncertainty. Used without specifying any options (many options are possible — see Section
8.3), simgi will compute intelligent default quantities that are appropriate for the model
being estimated. In the case of logit, simqi will report the probability that ¥ = 1.

8 The Main Commands

This section provides more detailed information about each of the main commands in Clarify:
estsimp, setx, and simgi. Much of the information also appears in on-line help files, which can be
viewed by searching the Stata help menu or entering help command name at the Stata prompt.

8.1 estsimp

Format:

estsimp modelname depvar [indepvars] [weight] [if exp] [in rangel
[, sims(m) genname(newvar) antisim mi(filel file2 ... filek) iout dropsims]

Description:

estsimp estimates a variety of statistical models and generates M simulations of each parameter.
Currently supported models include regress, logit, probit, ologit, oprobit, mlogit, poisson, nbreg.
weibull, sureg, and the additive normal model for compositional data. The simulations are stored
in new variables bearing the names newwvarl, newvar2,...,newvark, where k is the number of
parameters. Each variable has M observations corresponding to the M simulations. estsimp
labels the simulated variables and lists their names on the screen, so you can verify what was
simulated. The estsimp command accepts nearly all options that are typically available for the
supported models. It also accepts several special options that are described below.

Options:

sims(M) specifies the number of simulations, M, which must be a positive integer. The default
is 1000 simulations. If you choose a large number of simulations, you may need to allocate

more memory to Stata. See [R] memory in the Stata reference manual for more details about
memory allocation.

genname(newvar) specifies a stub-name for the newly generated variables. If no stub is given,

Stata will generate the variables b1, b2, ..., bk, otherwise it will generate newvarl, newvar2, ...
provided that the variables do not exist in memory already.

antisim instructs estsimp to use antithetical simulations, in which numbers are drawn in pairs

from the uniform|0,1] distribution, with the second draw being one minus the first. The
antithetical draws are then transformed to obtain simulations from a multivariate normal
distribution. This procedure ensures that the mean of the simulations for a particular param-
eter is equal to the point estimate of that parameter even with a small number of simulations.

mi(filelist) allows estsimp to analyze multiply-imputed datasets: files in which missing values

iout

have been multiply imputed, such as created by Amelia. Enter the name for each imputed
dataset you want to use, such as mi(filel file2 file3). Alternatively, you can enter a
common stub name for all imputed datasets, such asmi(file). In this case, estsimp assumes
that you want to use all files in the working directory that are part of the uninterrupted
sequence filel, file2, file3... estsimp will estimate the parameters for each dataset and use
the estimates to generate simulations, which will reflect not only estimation uncertainty but
also the uncertainty arising from the imputation process. Note: if the data in memory have
been changed, you cannot specify the mi() option until you clear the memory or save the
altered dataset. See the Amelia manual for more information about multiple imputation and
the number of imputed files you need.

instructs estsimp to print intermediate output (a table of parameter estimates) for each
imputed dataset that it analyzes. By default, estsimp suppresses the intermediate output
and displays only the final estimates produced by combining the results from each imputed
dataset.

dropsims drops the simulated parameters from the previous call to estsimp.

Examples:

To estimate a linear regression of y on z1, z2, x3, and a constant term; simulate 1000 sets of
parameter estimates; and then save the simulations as b1, b2, ..., bk, type:

. estsimp regress y x1 x2 x3

In this example, Stata creates five new variables. The variables b1, b2 and b3 will contain simulated
coefficients for x1, 2 and x3; b4 will hold simulations of the constant term; and b5 will contain
simulated values for sigma squared, the mean squared error of the regression.

To simulate 500 sets of parameters from a logit regression and save the results as variables beginning
with the letter “s”, type:

,newvark,

. estsimp logit y x1 x2 x3, sims(500) genname(s)

Since the logit model contains no ancillary parameters, this command will generate four new vari-
ables: s1, s2, s3, and s4. Variables s1—s3 are simulated coefficients for x1, 2 and x3, and the final
variable, s4, is the simulated constant term.

To simulate 1000 sets of parameters from an ordered probit regression in which the dependent
variable can assume three values (low, medium, and high), type:

. estsimp oprobit y x1 x2 x3

The ordered probit model does not contain a constant term, but it does have ancillary parameters
called cut-points. Thus, the estsimp command listed above generates five new variables. The
variables b1, b2 and b3 hold simulated coefficients for z1 2 and x3. Variables b4 and b5 contain
simulations for the two cutpoints (cutl and cut2).

To obtain antithetical variates, use the antisim option, as in

. estsimp oprobit y x1 x2 x3, antisim

Suppose that we have three imputed datasets, called impl.dta, imp2.dta, and imp3.dta. We could
analyze all three datasets and combine the results by issuing the following command:

. estsimp oprobit y x1 x2 x3, mi(impl imp2 imp3)

The resulting simulations of the main and ancillary parameters would reflect both estimation un-
certainty and the variability associated with the multiple imputations.
To view the intermediate output from each ordered probit estimation, add the iout option to the

previous command, as in

. estsimp oprobit y x1 x2 x3, mi(impl imp2 imp3) iout

8.2 setx
Format:
setx

10

setx function [weight] [if exp] [in range] [, noinher nocwdel]

setx varnamel functionl varname2 function2 ...
[weight] [if exp] [in rangel [, noinher nocwdel]

setx (varnamel varname2) functionl (varname3 varname4) function2 ...
[weight] [if exp] [in range] [, noinher nocwdel]

where
function = mean|median|min|max|p#|math|#| ‘macro’ |varname [#]

Description:

After simulating parameters from the last estimation (see Section 8.1), use setx to set values for
the explanatory variables (the X’s), change values that have already been set, or list the values
that have been chosen. The main value types are

mean arithmetic mean

median median

min minimum

max maximum

p# #th percentile

math a mathematical expression, such as 5*5 or sqrt(23)
a numeric value, such as 5

‘macro’ the contents of a local macro

[#] the value in the #th observation of the dataset

If you used multiply imputed datasets at the estimation stage, setx will use those same imputed
datasets to calculate values for the explanatory variables. For instance, setx x1 mean would
calculate the mean of x1 across all the imputed datasets.

When using setx or any other Stata command to calculate summary statistics such as means,
medians, minimums, maximums, and percentiles, you must define the sample. At the estimation
stage, Stata automatically disregards observations that do not satisfy the “if”, “in”, and “weight”
conditions specified by the user. It also ignores observations with missing values on one or more
variables. Before setting a particular variable equal to its mean or any other summary statistic,
users must decide whether to calculate the statistic based only on observations that were used
during the estimation stage, or to include other observations in the calculation.

By default, setx inherits the if-in-weight conditions from estsimp and disregards (casewise-deletes)
any observation with missing values on the dependent or explanatory variables, unless you use the

11

options for multiple imputation. You can specify different if-in-weight conditions by including them
in the setx command line, and you can disregard all inherited conditions by using the noinher
and nocwdel options described below.

The setx command is also used by another statistical package called relogit, which is also available
from http://gking.harvard.edu. If you are running relogit with the wc() or pc() options,
indicating that the data were selected on the dependent variable, setx will correct the selection
bias when calculating summary statistics. For this reason, means and percentiles produced by setx
may differ from means and percentiles of the (biased) sample. When the proportion of 1’s in the
population is known only to fall within a range, such as pc(.2 .3), setx will calculate bounds on
the values of the explanatory variables. The result will be two X-vectors, the first assuming that
the true proportion of 1’s is at its lower bound, and the second conditional on the true proportion
being at its upper bound. The program will pass these vectors to relogitq and use them to
calculate bounds on quantities of interest. To set each explanatory variable at a single value that
falls midway between its upper and lower bounds, use the nobound option that is described below.

setx accepts aweights and fweights. It also accepts the special options listed below.

Notes: (1) Setx will not accept spaces in mathematical expressions unless you enclose the expression
in parentheses. setx x4 1n(20) is a valid command, but setx x4 1n(20) is a syntax error.
Similarly, setx x4 5*5 and setx x4 (5 * 5) are valid, but setx x4 5 * 5 is not. (2) You may
use square brackets ([]) when referring to observation numbers, e.g. setx x [15], but do not use
square brackets in mathematical expressions, or you may get unexpected results. We recommend
that users check the values they have set with setx by entering setx without any arguments. (3)
setx relies on three globals: the matrix mrt_xc and the macros mrt_vt and mrt_seto. If you change
the values of these globals, the program may not work properly.

Options:

noinher causes setx to ignore all if-in-weight conditions that are inherited from estsimp. The
user can specify new if-in-weight conditions by typing them as part of the setx command.

nocwdel forces setx to calculate summary statistics based on all valid observations for a given
variable, even if the observations contain missing values for the other variables. If nocwdel is
not specified, setx will casewise-delete observations with missing values.

nobound This option is available only after relogit, and only when the true proportion of 1’s
is assumed to fall within a specified range. Suppose the user typed pc(.2 .4) with relogit
and then entered setx x1 mean. By default, setx would set the variable x1 equal to two
values: the mean of x1, assuming that the true proportion of ones is only 0.2, and the mean
of x1, allowing that the true proportion is as high as 0.4. Both values for x1 will be passed
to relogitq and used to calculate bounds on quantities of interest. The nobound option
overrides this procedure by setting each x to a single value: the midpoint of its upper and
lower bound. Thus, the command setx x1 mean, nobound would set x1 equal to the following

12

expression: [(mean(x1)|T = 0.2) + (mean(xz1)|T = 0.4)]/2, where T represents the presumed
proportion of 1’s in the population.

keepmrt is a programmer’s option that instructs setx to return the matrix r(mrt_xc) without
changing the globals mrt_xc, mrt_vt, and mrt_seto. If you don’t understand what this means
you should not use this option.

Examples:

To list values that have already been set:
. setx

To set each explanatory variable at its mean:
. setx mean

To set each explanatory variable at its median, based on a sample in which 3 > 12 and all inherited
conditions are ignored and casewise deletion is suppressed:

. setx median if x3>12, noinh nocw
To set each explanatory variable to the value contained in the 15th observation of the dataset
. setx [15]

The command can also set each variable separately. For instance, to set x1 at its mean, x2 at its
median, x3 at its minimum, x4 at its maximum, x5 at its 25th percentile, x6 at In(20), x7 at 2.5,
and x8 equal to a local macro called myval, type:

. setx x1 mean x2 median x3 min x4 max x5 p25 x6 1n(20) x7 2.5 x8 ‘myval’
To change the value of x3 from its previously chosen value to 5*5
. setx x3 b5%b

To set all variables except x10 at their means, and fix 10 at its 25th percentile, call setx twice:
once to set all variables at their means, and a second time to change the value of 10 to its 25th
percentile.

13

. setx mean
. setx x10 p25

setx can also set values for groups of variables. To set x1 and x2 to their means, x3 to its median,
and x4 and x5 to their 25th percentiles, type:

. setx (x1 x2) mean x3 median (x4 x5) p25

8.3 simqi
Format:

simqi [, pv genpv(newvar)
ev genev(newvar)
pr prval(valuel value2...) genpr(newvarl newvar2...)
fd(existing option) changex(varl vall val2 [& var2 vall val2])
msims (#) tfunc(function) level(#) listx]

Description:

After simulating parameters from the last estimation (see Section 8.1) and setting values for the ex-
planatory variables (see Section 8.2), use simqi to simulate various quantities of interest, including
predicted values, expected values, and first differences.

Predicted values contain two forms of uncertainty: “fundamental” uncertainty arising from sheer
randomness in the world, and “estimation” uncertainty caused by not having an infinite number
of observations. More technically, predicted values are random draws of the dependent variable
from the stochastic component of the statistical model, given a random draw from the posterior
distribution of the unknown parameters.

If there were no estimation uncertainty, the expected value would be a single number representing
the mean of the distribution of predicted values. But estimates are never certain, so the expected
value must be a distribution rather than a point. To obtain this distribution, we average-away the
fundamental variability, leaving only estimation uncertainty. For this reason, expected values have
a smaller variance than predicted values, even though the point estimate should be roughly the
same in both cases. simgi calculates two kinds of expected values, depending on the model: the
expected value of Y, and the probability that ¥ takes on a particular value. For models in which
these two quantities are equal, simqi avoids redundancy by reporting only the probabilities.

Simulated expected values are equivalent to simulated probabilities for all the discrete choice models
that simqi supports (logit, probit, ologit, oprobit, mlogit). In these models, the expected

14

value of Y is a vector, with each element indicating the probability that Y = j. Consider an ordered
probit with outcomes 1, 2, 3. The expected value is [Pr(Y = 1), Pr(Y = 2), Pr(Y = 3)], the mean
of a multinomial distribution that generates the dependent variable.

A first difference is the difference between two expected values. To simulate first differences use
the fd “wrapper”, which is described below.

simgi can generate predicted values, expected values and first differences for all the models that
it supports. By default, however, it will only report the quantities of interest that appear in the
table below. To view other quantities of interest or save the simulated quantities as new variables
that can be analyzed and graphed, use one of simqi’s options.

Statistical Quantities displayed

Model by default
regress E(Y)
logit Pr(Y=1)
probit Pr(Y=1)
ologit Pr(Y=j) for all j
oprobit Pr(Y=j) for all j
mlogit Pr(Y=j) for all j
poisson E(Y)
nbreg E(Y)
sureg E(Y;) for all equations j
weibull E(Y)

Options:

pv displays a summary of the predicted values that simqi generated via simulation.

genpv(newvar) saves the predicted values as a new variable in the current dataset. Each “obser-
vation” of newvar represents one simulated predicted value.

pr displays a summary of the probabilities that simqi generated via simulation.

prval(valuel value2 ...) instructs simqi to evaluate the probability that the dependent variable
takes-on each of the listed values

genpr(newvarl newvar2 ...) saves the simulated probabilities as new variables in the current
dataset. Each new “observation” represents one simulated probability. If both the prval() op-
tion and the genpr() option are used, simqi will save Pr(Y=valuel) in newvarl, Pr(Y=value2)
in newvar2, etc. If the prval() option is not specified, genpr() will save the probabilities in
the order that they appear on the screen.

15

ev displays a summary of expected values that simqi generated via simulation. This option is not
available for discrete choice models, where it is redundant with pr.

genev(newvar) saves the expected values in a new variable called newvar. Each observation of
newvar represents one simulated expected value. This option is not available for discrete
choice models, where it is redundant with genpr().

fd(existing option) is a wrapper that makes it easy to simulate first differences. Simply wrap
the fd() wrapper around an existing option and specify the changex() option.

changex(varl vall val2) specifies how the explanatory variables (the z’s) should change when
evaluating a first difference. changex uses the same basic syntax as setx, except that each
explanatory variable has two values: a starting value and an ending value. For instance,
fd(ev) changex(x1 .2 .8) instructs simgi to simulate a change in the expected value of Y
caused by increasing z1 from its starting value, 0.2, to its ending value, to 0.8.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95)
or the value set by set level. For more information on the set level command, see the
on-line help for level.

msims(#) sets the number of simulations to be used when calculating expected values. The
number must be a positive integer. By default, the value of msims is set at 1000. simqi
disregards the msims option whenever the expected value is parametrically defined.

listx instructs simqi to list the x-values that were used to produce the quantities of interest. These
values were set using the setx command.

tfunc(function) allows the user to specify a transformation function for transforming the depen-
dent variable. This option is only available for regress and sureg. The currently supported
functions are

Function Transformation (for all variables j)

squared y; — Y; * Y;
sart g — /()
exp yj — €Y
1n y; — In(y;)
logiti y; — e¥ /(143 . e%)

Basic Examples:

To display the default quantities of interest for the last estimated model, type:

. simqi

16

For a summary of the simulated expected values, type:
. simqi, ev

For a summary of the simulated probabilities, Pr(Y=j), for all j categories of the dependent variable,
type:

. simqi, pr

To display only a summary of Pr(Y=1), the probability that the dependent variable takes on a
value of 1, type:

. simqi, prval(1l)

To generate first differences, use the fd() wrapper and the changex() option. For instance, the
following command will simulate the change in the expected value of Y caused by increasing x4
from 3 to 7, while holding other explanatory variables at their means

. setx mean
. simgi, fd(ev) changex(x4 3 7)

To simulate the change in the simulated probabilities, Pr(Y=j), for all j categories of the dependent
variable, given an increase in x4 from its minimum to its mean, type:

. setx mean
. simgi, fd(pr) changex(x4 min mean)

If you are only interested in the change in Pr(Y=1) caused by raising x4 from its 20th to its 80th
percentile when other variables are held at their mean, type:

. setx mean
. simqi, fd(prval(l)) changex(x4 p20 p80)

More Intricate Examples:

To display not only the simulated expected values but also the x-values used to produce them, we
would type:

. simqi, ev listx

17

simqgi displays 95% confidence intervals by default, but we could modify the previous example to
give a 90% confidence interval for the expected value:

. simgi, ev listx level(90)
To save the simulated expected values in a new variable called predval, type:
. simqi, genev(predval)

To simulate Pr(Y=0), Pr(Y=3), and Pr(Y=4), and then save the simulated probabilities as variables
called simpr0, stmpr3 and simpr4, type:

. simqi, prval(0 3 4) genpr(simprO simpr3 simpré)

The changex option can be arbitrarily complicated. Suppose that we want to simulate the change
in Pr(Y=1) caused by simultaneously increasing z1 from .2 to .8 and 22 from In(7) to In(10). The
following lines will produce the quantities we seek:

. setx mean
. simqi, fd(prval(1)) changex(xl .2 .8 x2 1n(7) 1n(10))

We could augment the previous example by requesting a second first difference, caused by increasing
x3 from its median to its 90th percentile. Simply separate the two changex requests with an
ampersand.

. setx mean
. simgi, fd(prval(1l)) changex(xl .2 .8 x2 1n(7) 1n(10) & x3 median p90)

Likewise, the fd() option can be as intricate as we would like. For instance, suppose that we have
run a poisson regression. We want to see what happens to Pr(Y=2), Pr(Y=3), and the expected
count when we increase 1 from its minimum to its maximum. To obtain our quantities of interest,
we would type:

. setx mean
. simqi, fd(prval(2 3)) fd(ev) changex(xl min max)

simqi allows us to save any simulated variable for subsequent analysis. To find the mean, standard
deviation, and a confidence interval around any quantity of interest that has been saved in memory,
use the sumgi command. To graph the simulations, use graph or kdensity.

18

The tfunc() option reverses common transformations that users have applied to the dependent
variable. Suppose that you have taken the log of the dependent variable before running estsimp
regress. The command simgi would provide quantities of interest on the logged scale. If you
wanted to reverse the transformation, thereby recovering the original scale, you could type

simqi, tfunc(exp)

9 Frequently Asked Questions

Why does Clarify give slightly different results each time? Clarify uses random simulation
to create quantities of interest and associated measures of uncertainty. Slight discrepancies are a
result of taking a finite number of simulations and using a different random number seed. If you
require more precision, increase the number of simulations drawn (see Section 8, Sub-section 8.1).
If exactly the same numerical results are required, set the random number seed with the Stata
command set seed before beginning the analysis.

Is it ok if some of my explanatory variables are statistically insignificant? Yes. Clarify
computes quantities of interest based on all estimated coefficients, regardless of their level of sta-
tistical significance. This is not problematic because the true quantities of interest are usually the
predicted values, expected values, and first differences, not the coefficients themselves. It is usually
better to focus on the confidence intervals €larify reports for each quantity it computes than the
standard errors of coefficients. Moreover, even coefficients that are not statistically significant can
provide important information: after all, a coefficient that is not significantly different from zero
will probably significantly different from almost all other numbers.

How do I know how many simulations (M) to draw? In our experience M = 1000 is
sufficient for most analyses. One check on the adequacy of M is to verify that the means of the
simulated parameters are equal to the estimated parameters within the desired degree of precision.
If they are not, increase M until you achieve the desired precision. A more general check is to do
the same €larify run twice; if you need three digits of precision to present in a table, then both
runs should be the same to three digits. Otherwise increase M and try again. Be aware that in
larger models increasing M may add noticably to the computer time and memory required for
simulation. Using antithetical simulation can greatly reduce the needed number of simulations for
some purposes.

How can I set the X’s equal to the actual values in my dataset? You can use the setx
command to set the x’s at any value you'd like, including the actual values that appear in the

19

dataset. For instance, setx [93] will set all the x’s equal to the values that appear in the 93rd
observation of your dataset. The sequence of commands

setx mean /* sets all x’s to their means */
setx x1 x1[7] /* resets x1 to value in 7th observation */

will set all the x’s equal to their means, and then set x1 equal to the value of x1 that appears in
the 7th observation of the dataset. If you wanted to get results for each x1 in your dataset, you
could write a little loop, such as:

setx mean /* set all x’s to their mean levels */

local i 1 /* create a counter that runs from 1 to */

while ‘i’ <= _N { /* _N, where _N is the # of observations */
setx x1 x1[¢i’] /* set x1 to the value in the ith obs */
simqi /* simulate quantity of interest */
local i = ‘i’ + 1 /* repeat for other observations */

}

How can I set the X’s when I have interaction terms? setx will work with interacted
variables. Suppose the independent variables in your dataset are X1 and X2 and you have created
an interaction term X1X2 = X1 x X2. First you would run estsimp with the interacted variable,

e.g.:
estsimp regress y x1 x2 x1x2

You need to set X1X2 to the product of the means of X1 and X2 (rather than the mean of the
product). One possibility is to set the values by hand, e.g.,

setx x1x2 10%12

where 10 is the mean of x1 and 12 is the mean of x2.

This can be automated as follows:

summarize x1, meanonly /* Compute the mean of x1 */

local mx1=‘r(mean)’ /* Save the mean in a local macro */
summarize x2, meanonly /* Compute the mean of x2 */

local mx2=‘r(mean)’ /* Save the mean in a local macro */
setx x1x2 ‘mx1’*‘mx2’ /* Setx to mean(x1l)*mean(x2) */

20

How can I use Clarify to analyze compositional data? The procedure involves four basic
steps:

1. Run tlogit to transform the vote shares (or other compositional data) into log ratios
2. Run estsimp sureg to estimate a seemingly unrelated regression and simulate the parameters
3. Run setx to choose real or hypothetical values for the explanatory variables (X's)

4. Run simqi with the tfunc() option to simulate the distribution of votes, conditional on the
simulated parameters and chosen X's.

Suppose that we are studying a political system with 500 electoral districts. Each observation or
row in the dataset pertains to one of those districts. In this example, we have three political parties
that each garner a percentage of the vote. Their vote shares, collected in variables v1, v2, and v3,
sum to 100 percent.

First, we select party 3 as our reference party and transform the vote shares of the other two
parties into log ratios with respect to party 3. Thus, yl = In(vl/v3) and y2 = In(v2/v3). The
appropriate syntax in €larify is tlogit vl y1 v2 y2, base(y3) percent, which will create two
new variables: y1 and y2, which are the log ratios for vl and v2 with respect to the base variable
v3.

Second, use the estsimp command to run a seemingly unrelated regression model with the log
ratios yl and y2 as our dependent variables. The syntax is estsimp sureg (y1 x1 x2) (y2 x3
x4). Each equation is enclosed in parentheses. Thus, the first equation states that the log ratio
yl is a linear function of the explanatory variables x1 and x2. The program will automatically
add a constant term, as well, unless the user asks that it be suppressed. Likewise, the second
equation states that y2 is a linear function of x3, x4, and a constant. The estsimp command will
estimate the model and simulate the parameters. By default, estsimp will draw 1000 values for
each parameter. In this example, the program would draw 1000 sets of betas (each set has six
elements: three betas for equation 1 and three for equation two); the program would also generate
1000 simulations of ¥, a 2x2 matrix that governs the relationship between the errors of the two
equations. Clarify will store these simulations in memory for subsequent use.

Third, use the setx command to choose some hypothetical or real values for our explanatory
variables. For instance, type setx (x1 x2) mean x3 15 x4 p20 to set variables x1 and x2 at
their respective means, x3 equal to the number 15, and x4 equal to its twentieth percentile.

Finally, use the simqi command to simulate quantities of interest, such as the predicted distribution
of votes. The command is simqi, pv tfunc(logiti), where tfunc(logiti) tells the program to
apply the inverse logistic function to transform the log ratios into shares of the total vote.

21

How did you generate the graphs in your paper? Clarify does not automatically produce
graphs. In order to produce a graph, you will need to use Stata’s graphics commands. The sequence
of commands used to generate Figure 1 from our paper is:

generate plo
generate phi .
generate ageaxis = _n + 17 in 1/78
setx educate 12 white 1 income mean
local a = 18
while ‘a’ <= 95 {

setx age ‘a’ agesqrd (‘a’"2)/100

simqi, prval(l) genpr(pi)

_pctile pi, p(2.5,97.5)

replace plo = r(rl) if ageaxis==‘a’

replace phi = r(r2) if ageaxis==‘a’
drop pi
local a = ‘a’ + 1

X
sort ageaxis
graph plo phi ageaxis, s(ii) c(l|)

How can I create a log of all the commands and output in a Clarify session? See [R]
log in the Stata reference manual or consult the on-line help for the log command.

How do I use imputed data sets from Amelia in Clarify? Amelia deals with missing data
problems by filling in your missing values with imputed values. It creates several imputed data
sets, where the observed data are identical and the missing data differ by the degree to which the
correct values can be predicted from the observed data. When Amelia is finished, you have a small
group (usually 4-5) data sets, or for some difficult problems with high imputation variance a larger
number (see the Amelia manual for details). Clarify will automatically and appropriately combine
the results from these data sets.

For example, suppose you have 2 imputed datasets called ds1 and ds2. Then follow these steps:

1. Load either dsl or ds2 into memory by typing “use dsl”

2. Run a model that clarify supports and specify the mi() option. If dsl and ds2 are in your
working directory, the command might look something like this: estsimp regress y x1 x2,
mi(ds1l ds2). Clarify will report the parameter estimates and standard errors, based on all
imputed datasets named.

22

3. To set the X’s (or to get summary statistics for the imputed datasets), use the setx command.
Setx will remember the locations of the imputed datasets that you specified at the estsimp
stage. For example, ”setx mean” would set x1 and x2 to their means, again based on all the
imputed datasets. If you want to see actual numerical values of those means, type "setx” by
itself (after running ”setx mean”) and clarify will list out the means for each x.

How do I cite this program? If you use this software, please cite

Michael Tomz, Jason Wittenberg, and Gary King. 2003. CLARIFY: Software for Inter-
preting and Presenting Statistical Results. Version 2.1. Stanford University, University
of Wisconsin, and Harvard University. January 5. Available at http://gking.harvard.edu/

and

Gary King, Michael Tomz, and Jason Wittenberg (2000). “Making the Most of Sta-
tistical Analyses: Improving Interpretation and Presentation.” American Journal of
Political Science 44, no. 2 (April 2000): 347-61.

Can I share Clarify with others? Clarify is (C) Copyright, 1998—2003, Michael Tomz, Jason
Wittenberg and Gary King, All Rights Reserved. You may copy and distribute this program
provided the copy is identical to the original and you do not charge for it. To request an exception,
please contact Michael Tomz, tomz@stanford.edu.

We recommend that you distribute the current version of this program, which is available from
http://GKing.Harvard.Edu, or just give out the url.

What if I find a bug? First, get the most recent version (from http://gking.harvard.edu)
and try to replicate the problem. If the problem persists, copy down exactly what you see on the
screen when the program crashes, and email it along with the command you used to generate the
error, to the Clarify Listserv at clarify@latte.harvard.edu.

You may also send comments by mail to Professor Michael Tomz, Department of Political Science,
FEncina Hall, Stanford University, Stanford, CA 94305-6044.

10 User-Contributed Modules

Fred Wolfe has contributed a module called “QSIM”, which provides a wrapper automates sim-
ulation with dummy variables produced by Stata’s xi prefix. For details about this and other

23

user-contributed modules type net search clarify from the Stata command prompt.

11 Formulae - A Peek Under the Hood

This section is intended for advanced users who want details about the algorithms that €larify uses
to simulate parameters, set values for the explanatory variables, and compute quantities of interest.
Other information is in our article. We welcome any suggestions for improvement.

11.1 Algorithms for estsimp

Recall that the estsimp command performs two functions: it estimates the main and ancillary
parameters () of the statistical model, and it draws simulations of those parameters from their
asymptotic sampling distribution.

Typically, the sampling distribution is multivariate normal with mean equal to the point-estimates
of the parameters (4) and variance equal to the variance-covariance matrix of estimates V(¥). The
current version of €larify contains two exceptions to this rule.

In the case of linear regression, the effect coefficients (3s) are drawn from a multivariate normal,
but simulations of the (homoskedastic) variance o2 are obtained in a separate step from a scaled
inverse x2 distribution with v = n — k degrees of freedom, where n is the number of observations
in the dataset and k is the number of explanatory variables, including the constant term (see
Gelman, et al., 1995, p. 237). The two-step procedure is legitimate because the effect coefficients
and variance parameter are orthogonal in a linear regression; the procedure is desirable because o2
is strictly positive, and therefore more appropriately drawn from its exact posterior than from a
normal distribution. To obtain simulations of o2, the program draws ¢ from a x? with v degrees of

freedom, and then calculates 62 = vo?/c. The resulting draws have an expected value of (ﬁ) &2,

which approaches 62 as v — 0.

Likewise, the effect coefficients (s) of a seemingly unrelated regression are drawn from the mul-
tivariate normal, but simulations of the variance matrix ¥ are obtained in a separate step. Here,
the appropriate posterior distribution is the inverse Wishart (Gelman, et al., 1995, p. 481) with v
degrees of freedom and dimension p, where p is the number of equations in the seemingly unrelated
regression model. In cases where the number of explanatory varables varies from one equation to
the next, €larify calculates n — k for each equation and sets v equal to the mean of those values. To
obtain simulations of 3, the program draws from a Wishart with scale factor (Vf))_l and inverts
the draws. The algorithm for drawing from the Wishart relies on Bartlett’s decomposition, which is
concisely summarized in Johnson (1987, p. 204) and Ripley (1987, pp. 99-100). estsimp produces
draws that have an expected value of V_; _12, which approaches Y as v goes to infinity. In small
samples this procedure is conservative, since v > v — p — 1, implying that E (f)) > 3.

24

For all models, simulations of the main and ancillary parameters are random. This means that, in
any given run of estsimp, the average value of 4 may be slightly smaller or larger than the point
estimate 4, though the approximation becomes more precise with a higher number of simulations.
Users can force the mean of the simulated parameters to equal the vector of point estimates by
requesting antithetical simulations (Stern 1997, pp. 2028-29). The antisim option instructs the
program to draw random numbers in pairs from the uniform|0,1] distribution, with the second draw
being the complement of the first. For instance, if the first draw is 0.3 then the complementary draw
is 0.7. The draws are, therefore, exactly balanced around the mean of the uniform distribution.
These anthithetical simulations are then used to obtain antithetical or balanced draws from the
multivariate normal via the inverse CDF method.

When users are analyzing a single dataset, Clarify estimates a single vector 4 with variance f/(‘y)
and draws all M simulations based on those estimates. The table that appears on the screen
gives the exact point estimates and standard errors, instead of reporting the means and standard
deviations of the simulations.

The procedure is somewhat more complicated when the researcher employs the mi option to analyze
several imputed datasets. In this case, estsimp repeats the following algorithm I times, where [is
the number of completed datasets: estimate the parameters and their variance-covariance matrix
conditional on the information in dataset i (i = 1,2,...,I), and then draw M/I sets of parameters
from their sampling distribution. By repeating this algorithm I times, the program generates M
sets of simulated parameters. The output table gives the analytical point-estimate, standard error,
and t-statistic for each parameter, instead of reporting the means and standard deviations of the
simulations. Specifically, the multiple-imputation point estimate for parameter ¢ is § = %Zi[zl gi
and the variance associated with ¢ is a weighted combination of the within-imputation and between-
imputation variances: V(q) = w + (1 +I~1)b, where w = } Zi[:l V(g) and b= 7= Zle(cji —q)°.
The ratio of ¢ (the parameter estimate) to V(q)'/? (its standard error) forms a t-statistic with
degrees of freedom v = (I — 1)[1 + (1++1)b]2. For more information about these procedures, see
King, et al. (2001) and Schafer (1997, pp. 109-110).

11.2 Algorithms for setx

setx allows the user to choose real or hypothetical values for the explanatory variables (the Xs).
The program employs standard formulae for the mean, the minimum, the maximum, percentiles,
and other descriptive statistics. If the user is analyzing several imputed datasets, setx will calculate
the average statistic across the datasets. For instance, the command setx x1 mean will calculate
the mean of x1 in each dataset, and then set x1 equal to the average of those means. Similarly,
the command setx x1 x1[3] will obtain the value of x1 in the third row of each imputed dataset,
and then set x1 equal to the average of those values.

25

11.3 Algorithms for simqi

simqi simulates quantities of interest based on the parameters that were generated by estsimp and
the z-values that were chosen with setx. The program obtains simulations of the dependent variable
and uses them to calculate expected values, probabilities, first differences, and other quantities of
interest. This procedure works in all cases but involves some approximation error, which users
can make arbitrarily small by choosing a sufficient number of simulations. In many cases, though,
shortcuts exist that can curtail both computation time and approximation error. simgi employs
such shortcuts whenever possible. Here, we sketch the algorithms for each model that €larify
supports.

regress: The exact algorithm in simqi depends on whether the user has transformed the dependent
variable (e.g., taken the log of y) prior to estimation. If no such transformation has occurred, the
program generates one predicted value according to the formula § = X, + ¢, where 3 is a vector
of simulated effect coefficients and € is one draw from N(0,52). Likewise, the program simulates
one expected value as E(y) = X,3. The algorithm becomes a bit more complicated if the user
transformed the dependent variable prior to estimation, and would like to reverse the transformation
when interpreting the results. Let f represent a function, as identified by the tfunc () option, that
reverses the transformation. If f has been specified, the program simulates one predicted value
according to the formula f (XCB + €). For an expected value, the program draws m values of €,
(d=1,2,...,m) from N(0,5?) and then computes (1/m) 7" | f(X.3 + &), which is the average
of m predicted values.

logit: The formula for 7, the simulated probability that the dependent variable y takes on a

value of 1,1s 1/(1 + e XD). To obtain one simulation of y, the program draws a number from the
Bernoulli distribution with parameter 7.

probit: The formula for 7, the simulated probability that the dependent variable y takes on a

value of 1, is ®(X.0) where @ is the c.d.f. of the standard normal distribution. To obtain one
simulation of y, the program draws a number from the Bernoulli distribution with parameter 7.

ologit: The exact formula depends on the number of categories in the dependent variable. Suppose

there are three categories. Let 3 represent one simulated vector of effect coefficients and let 73, and
Ths stand for draws of the cutpoints. To obtain one simulation of the probabilities for each category

(y =0,y = 1,y = 2), the program calculates: 7y = Pr(y = 0) = m, 71=Priy=1) =

1 — 1~ T = > = e —% 1
P Eor s R e v e R and T = Pr(y=2)=1 e With these results, the program

can draw a predicted value, g, from a multinomial distribution with parameters 7y, 71, 72, and
n = 1.

oprobit: The exact formula depends on the number of categories in the dependent variable. Sup-

pose there are three categories. Let B represent one simulated vector of effect coeflicients and let
7o and 7p; stand for draws of the cutpoints. To obtain one simulation of the probabilities for

26

each category (y = 0,y = 1,y = 2), the program calculates 7o = Pr(y = 0) = ®(7ip — Xcﬁ),
1 = Pr(y = 1) = &(7p; — XcB) — (7, — Xcf), and 73 = Pr(y = 2) = ®(X. 0B — 7). With
these results, the program can draw a predicted value, ¢, from a multinomial distribution with
parameters 7g, 71, 72, and n = 1.

mlogit: The probability equation for the K nominal outcomes of the multinomial logit is 7; =
~ XeBj
Pr(y =j) = <

- SRy eXePk!
coefficients (3 for that category are set to zero. With these results, the program can draw a predicted
value, ¥, from a multinomial distribution with parameters equal to the 7s and n = 1.

where one of the J outcomes is the base category, such that the effect

poisson: The formula for the expected value [is X , and the probability that the dependent
variable takes on the integer value j is Pr(y = j) = e}# To obtain one predicted value, the
program draws g from a Poisson distribution with parameter ji. The Poisson simulator is adapted

from Press, et al. (1992), pp. 293-95.

nbreg: The formula for the expected value [is eXeB , just as in the Poisson regression model (Long
1997, pp. 230-33). The probability that the dependent value takes on the integer value j can be

jIT(@ 1) \a1+i a4+

parameter, by drawing simulations of In(«) and the other parameters from the multivariate normal
distribution and then calculating ™. To obtain a predicted value y, the program draws one
number from a poisson distribution with mean eX<0+¢ where e is simulated from a gamma dis-
tribution with shape parameter &~ and scale parameter &. When &~ < 1, the gamma simulator
is based on the algorithm developed by Ahrens and Dieter, as described in Ripley (1987, p. 88).
For other values of &1, the gamma simulator is based on the procedure by Best, as described in
Devroye (1986, p. 410).

i > _ 5y PGg+a™h a-lt \“] J : : : ~ « . P
simulated as Pr(y = j) = . simqi obtains &, the “overdispersion

sureg: As with regress, the algorithm for interpreting the results of a sureg depends on whether
the user transformed the dependent variable. If the user estimated the model without transforming
the dependent variable, the program generates one predicted value for equation k£ according to
the formula g, = X0k + €, where (3 is a vector of simulated effect coefficients for equation
k and € is a simulated disturbance term for that equation. Disturbances for all equations are
drawn simultaneously from a multivariate normal distribution with mean 0 and variance matrix
3, as obtained from the inverse Wishart. Likewise, the program simulates one expected value for
equation k as E (yx) = X B If the user has transformed the dependent variable, let f represent
the function that reverses the transformation. The program simulates one predicted value for
equation k according to the formula f (Xch; + €). For an expected value, the program draws m
sets of disturbance terms from N (0, f)) and indexes them as € 4, where k marks the equation and
d=1,2,...,m. Then, for each equation k the program computes (1/m) Y 7", f(Xch‘ng,d), which
is the average of m predicted values.

weibull: The algorithm depends on which metric, proportional hazard (PH) or accelerated failure-
time (AFT) metric, was used at the estsimp stage. The expected value is defined as A\'/PT" (1 + 1/p).

27

In the AFT metric, A = e=X¢fP; in the PH metric, A = eX*?. The program obtains simulations
of the ancillary shape parameter p drawing by [n(p) and the other parameters from a multivariate
normal distribution and then calculating el(®), To obtain a predicted value, the program draws
one number from the Weibull distribution with parameters X and p.

28

12 References

Devroye, Luc (1986). Non-Uniform Random Variate Generation. New York: Springer-Verlag.

King, Gary, Michael Tomz, and Jason Wittenberg (2000). “Making the Most of Statistical Analyses:
Improving Interpretation and Presentation.” American Journal of Political Science 44, no. 2 (April
2000): 347-61, copy at http://gking.harvard.edu/files/abs/making-abs.shtml.

King, Gary, James Honaker, Anne Joseph, and Kenneth Scheve (2001). “Analyzing Incomplete
Political Science Data: An Alternative Algorithm for Multiple Imputation.” American Political
Science Review 95, no. 1 (March 2001): 49-69, copy at http://gking.harvard.edu/files/abs/
evil-abs.shtml.

Johnson, Mark E. (1987). Multivariate Statistical Simulation. New York: John Wiley & Sons.

Long, J. Scott (1997). Regression Models for Categorical and Limited Dependent Variables. Thou-
sand Oaks, CA: SAGE Publications.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery (1992). Nu-
merical Recipes in C: The Art of Scientific Computing, 2nd ed. New York: Cambridge University
Press.

Ripley, Brian D. (1987). Stochastic Simulation. New York: John Wiley & Sons.
Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. New York: Chapman & Hall.

Stern, Steven (1997). “Simulation-Based Estimation.” Journal of Economic Literature 35, no. 4
(December): 2006-39.

13 Acknowledgements

We gratefully acknowledge comments and suggestions by Nick Cox, William Gould, Andrew D.
Martin, Ken Scheve, Randy Stevenson, and the editors and anonymous reviews of the Journal of
Statistical Software. We also wish to thank the many users of €larify who have provided numerous
suggestions for making the software more flexible and user-friendly. Parts of this program were
inspired by J. Scott Long, “CATDEV: Stata Modules for Interpretation of Categorical Dependent
Variables” (Indiana University, April 16, 1998). The multiple imputation procedure in estsimp
extends the miest command written by Ken Scheve (Harvard University, February 6, 1999).

29

