2 research outputs found

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Inverse Optimal Control in State Derivative Space System with Applications in Motor Control

    No full text
    This paper mathematically explains how state derivative space (SDS) system form with state derivative related feedback can supplement standard state space system with state related feedback in control designs. Practically, inverse optimal control is attractive because it can construct a stable closed-loop system while optimal control may not have exact solution. Unlike the previous algorithms which mainly applied state feedback, in this paper inverse optimal control are carried out utilizing state derivative alone in SDS system. The effectiveness of proposed algorithms are verified by design examples of DC motor tracking control without tachometer and very challenging control problem of singular system with impulse mode. Feedback of direct measurement of state derivatives without integrations can simplify implementation and reduce cost. In addition, the proposed design methods in SDS system with state derivative feedback are analogous to those in state space system with state feedback. Furthermore, with state derivative feedback control in SDS system, wider range of problems such as singular system control can be handled effectively. These are main advantages of carrying out control designs in SDS system
    corecore