658,698 research outputs found

    Flutter and forced response of mistuned rotors using standing wave analysis

    Get PDF
    A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors

    Rehabilitation robot cell for multimodal standing-up motion augmentation

    Get PDF
    The paper presents a robot cell for multimodal standing-up motion augmentation. The robot cell is aimed at augmenting the standing-up capabilities of impaired or paraplegic subjects. The setup incorporates the rehabilitation robot device, functional electrical stimulation system, measurement instrumentation and cognitive feedback system. For controlling the standing-up process a novel approach was developed integrating the voluntary activity of a person in the control scheme of the rehabilitation robot. The simulation results demonstrate the possibility of “patient-driven” robot-assisted standing-up training. Moreover, to extend the system capabilities, the audio cognitive feedback is aimed to guide the subject throughout rising. For the feedback generation a granular synthesis method is utilized displaying high-dimensional, dynamic data. The principle of operation and example sonification in standing-up are presented. In this manner, by integrating the cognitive feedback and “patient-driven” actuation systems, an effective motion augmentation system is proposed in which the motion coordination is under the voluntary control of the user

    Motion measurement of acoustically levitated object

    Get PDF
    A system is described for determining motion of an object that is acoustically positioned in a standing wave field in a chamber. Sonic energy in the chamber is sensed, and variation in the amplitude of the sonic energy is detected, which is caused by linear motion, rotational motion, or drop shape oscillation of the object. Apparatus for detecting object motion can include a microphone coupled to the chamber and a low pass filter connected to the output of the microphone, which passes only frequencies below the frequency of sound produced by a transducer that maintains the acoustic standing wave field. Knowledge about object motion can be useful by itself, can be useful to determine surface tension, viscosity, and other information about the object, and can be useful to determine the pressure and other characteristics of the acoustic field

    Moving and colliding pulses in the subcritical Ginzburg-Landau model with a standing-wave drive

    Full text link
    We show the existence of steadily moving solitary pulses (SPs) in the complex Ginzburg-Landau (CGL) equation, which includes the cubic-quintic (CQ) nonlinearity and a conservative linear driving term, whose amplitude is a standing wave with wavenumber kk and frequency ω\omega , the motion of the SPs being possible at velocities ±ω/k\pm \omega /k, which provide locking to the drive. A realization of the model may be provided by traveling-wave convection in a narrow channel with a standing wave excited in its bottom (or on the surface). An analytical approximation is developed, based on an effective equation of motion for the SP coordinate. Direct simulations demonstrate that the effective equation accurately predicts characteristics of the driven motion of pulses, such as a threshold value of the drive's amplitude. Collisions between two solitons traveling in opposite directions are studied by means of direct simulations, which reveal that they restore their original shapes and velocity after the collision.Comment: 7 pages, 5 eps figure

    The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models

    Get PDF
    The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.Comment: 13 pages RevTeX, 5 figures. New version. A revised form of the nonlinearity produces better result

    Motion Analysis for the Standing Long Jump

    Get PDF
    [[abstract]]The standing long jump is a standard test for primary school students. It can be used to evaluate the development of basic sports skills of a child. This paper presents a system that can automatically detect the motion during a standing long jump from a video sequence. The silhouette of the jumper in the film is segmented from the background first for all frames. A stick model is applied to the silhouette found in the first frame. Then a GA-based search algorithm is used to find the stick models for the rest of the frames. The stick model points out the important joints of a person and can be used to represent the pose of the jumper in each frame. From the pose change in consecutive frames, we will be able to analyze the movement of the jumper.[[conferencetype]]國際[[conferencedate]]20060704~20060707[[conferencedate]]Lisboa, Portugal[[iscallforpapers]]
    corecore