30,655 research outputs found
Kinematic Differences between Land and Shallow-water Sprinting
Previous studies have demonstrated the efficacy of using aquatic-based (AB) running when compared to land-based (LB) running to produce similar gains. However, most studies have primarily focused on deep-water running styles rather than shallow-water sprinting.
Purpose: To compare lower extremity running kinematics of female college athletes in an AB shallow water sprinting environment and in a LB sprinting environment.
Methods: 15 female NCAA Division III athletes completed this investigation. Each subject participated in a shallow-water sprinting familiarization session and completed both AB and LB sprinting tests. All trials were video recorded from the right sagittal view.
Results: T-test pairwise comparisons revealed significant differences between LB sprinting and AB sprinting. Stride rates (SR) (p
Conclusion: These data revealed that the AB sprinting style was found to have significant lower extremity kinematic differences when compared to the LB sprinting style for all of the kinematic variables that were measured with the exception of SLS and SW. The differences exhibited are due to fluid mechanics, e.g. drag, buoyancy, and hydrostatic pressure. However, the data assists with the understanding of the differences associated with sprinting in different media
Kinematic characteristics of barefoot sprinting in habitually shod children
Background. Anecdotally, a wide variety of benefits of barefoot running have been advocated by numerous individuals. The influence of the alterations in the properties of the shoe on the running movement has been demonstrated in adults at submaximal jogging speeds. However, the biomechanical differences between shod and barefoot running in children at sprinting speeds and the potential developmental implications of these differences are still less examined. The purpose was to determine the potential differences in habitually shod children's sprint kinematics between shod and barefoot conditions. Methods. Ninety-four children (51 boys and 43 girls; 6-12 years-old; height, 135.0 ± 0.12 m; body mass, 29.0 ± 6.9 kg) performed 30 m maximal sprints from standing position for each of two conditions (shod and barefoot). To analyze sprint kinematics within sagittal plane sprint kinematics, a high-speed camera (300 fps) was set perpendicular to the runway. In addition, sagittal foot landing and take-offimages were recorded for multiple angles by using five high-speed cameras (300 fps). Spatiotemporal variables, the kinematics of the right leg (support leg) and the left leg (recovery leg), and foot strike patterns: rear-foot strike (RFS), mid-foot strike (MFS), and forefoot strike (FFS) were investigated. The paired t -test was used to test difference between shod and barefoot condition. Results. Barefoot sprinting in habitually shod children was mainly characterized by significantly lower sprint speed, higher step frequency, shorter step length and stance time. In shod running, 82% of children showed RFS, whereas it decreased to 29% in barefoot condition. The touch down state and the subsequent joint movements of both support and recovery legs during stance phase were significantly altered when running in condition with barefoot. Discussion. The acute effects of barefoot sprinting was demonstrated by significantly slower sprinting speeds that appear to reflect changes in a variety of spatiotemporal parameters as well as lower limb kinematics. It is currently unknown whether such differences would be observed in children who typically run in bare feet and what developmental benefits and risks may emerge from increasing the proportion of barefoot running and sprinting in children. Future research should therefore investigate potential benefits that barefoot sprinting may have on the development of key physical fitness such as nerve conduction velocity, muscular speed, power, and sprinting technique and on ways to minimize the risk of any acute or chronic injuries associated with this activity. © 2018 Mizushima et al
Effects of a sand running surface on the kinematics of sprinting at maximum velocity
Performing sprints on a sand surface is a common training method for improving sprint-specific strength. For maximum specificity of training the athlete’s movement patterns during the training exercise should closely resemble those used when performing the sport. The aim of this study was to compare the kinematics of sprinting at maximum velocity on a dry sand surface to the kinematics of sprinting on an athletics track. Five men and five women participated in the study, and flying sprints over 30 m were recorded by video and digitized using biomechanical analysis software. We found that sprinting on a sand surface was substantially different to sprinting on an athletics track. When sprinting on sand the athletes tended to ‘sit’ during the ground contact phase of the stride. This action was characterized by a lower center of mass, a greater forward lean in the trunk, and an incomplete extension of the hip joint at take-off. We conclude that sprinting on a dry sand surface may not be an appropriate method for training the maximum velocity phase in sprinting. Although this training method exerts a substantial overload on the athlete, as indicated by reductions in running velocity and stride length, it also induces detrimental changes to the athlete’s running technique which may transfer to competition sprinting
Activation of the <i>gluteus maximus</i> during performance of the back squat, split squat and barbell hip thrust and the relationship with maximal sprinting
The purpose of this research was to compare muscle activation of the gluteus maximus and ground reaction force between the barbell hip thrust, back squat, and split squat and to determine the relationship between these outcomes and vertical and horizontal forces during maximal sprinting. Twelve male team sport athletes (age 25.0 ± 4.0 years, stature 184.1 ± 6.0 cm, body mass 82.2 ± 7.9 kg) performed separate movements of the three strength exercises at a load equivalent to their individual three repetition maximum. The ground reaction force was measured using force plates and the electromyography (EMG) activity of the upper and lower gluteus maximus was recorded in each leg and expressed as percentage of the maximum voluntary isometric contraction (MVIC). Participants then completed a single sprint on a non-motorized treadmill for the assessment of maximal velocity, horizontal and vertical forces. Although ground reaction force was lower, peak EMG activity in the gluteus maximus was higher in the hip thrust than the back squat (p = 0.024; 95%CI = 4 – 56%MVIC) and split squat (p = 0.016; 95%CI = 6 – 58%MVIC). Peak sprint velocity was correlated with both anterior-posterior horizontal force (r = 0.72) and peak ground reaction force during the barbell hip thrust (r = 0.69) but no other variables. The increased activation of gluteus maximus during the barbell hip thrust and the relationship with maximal running speed suggests that this movement may be optimal for training this muscle group in comparison to the back squat and split squat
Half-time and high-speed running in the second half of soccer
This study investigated if the quantity of high-speed running (movements >15 km.h-1) completed in the first 15 minutes of competitive football matches differed from that completed in the corresponding 15 minutes of the second half. Twenty semi-professional soccer players (age 21.2 ± 3.6 years, body mass 76.4 ± 3.8 kg, height 1.89 ± 0.05 m) participated in the study. Fifty competitive soccer matches and 192 data files were analysed (4 ± 2 files per match) using Global Positioning Satellite technology. Data were analysed using 2-way repeated measures ANOVA and Pearson correlations. No differences were found between the first 15 min of each half for the distance completed at high-speed (>15 km.h-1) or sprinting (>21 km.h-1), or in the number of sprints undertaken (p>0.05). However, total distance covered was shorter (1st half vs. 2nd half: 1746 ± 220 vs. 1644 ± 224 m; p<0.001) and mean speed lower (1st half vs. 2nd half: 7.0 ± 0.9 vs. 6.6 ± 0.9 km.h-1; p<0.001) in the first 15 min of the second half compared to the first. The correlations between the duration of the half-time interval and the difference in the high-speed running or sprinting between first and second halves (0-15 min) were very small (r=0.08 [p=0.25] and r=0.04 [p=0.61] respectively). Therefore, this study did not find any difference between the amount of high-speed running and sprinting completed by semi-professional soccer players when the first 15 minutes of the first and second half of competitive matches were compared The maintenance of high-speed running and sprinting, as total distance and mean speed declined, may be a function of the pacing strategies adopted by players in competitive matches
Efficacy of a four-week uphill sprint training intervention in field hockey players
Current evidence increasingly suggests that very short, supra-maximal bouts of exercise can have significant health and performance benefits. The majority of research conducted in the area however, uses laboratory-based protocols, which can lack ecological validity. The purpose of this study was to examine the effects of a high intensity sprint-training programme on hockey related performance measures. 14 semi-professional hockey players completed either a 4-week high intensity training (HIT) intervention, consisting of a total of six sessions HIT, which progressively increased in volume (n=7), or followed their normal training programme (Con; n=7). Straight-line sprint speed with and without a hockey stick and ball, and slalom sprint speed, with and without a hockey stick and ball were used as performance indicators. Maximal sprint speed over 22.9m was also assessed. Upon completion of the four-week intervention, straight-line sprint speed improved significantly in the HIT group (~3%), with no change in performance for the Con group. Slalom sprint speed, both with and without a hockey ball was not significantly different following the training programme in either group. Maximal sprint speed improved significantly (12.1%) in the HIT group, but there was no significant performance change in the Con group. The findings of this study indicate that a short period of HIT can significantly improve hockey related performance measures, and could be beneficial to athletes and coaches in field settings
Fitness Characteristics for Deputy Sheriff Recruits who Graduate or Separate from Academy: A Pilot Study
Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach?
Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine: a) the association between competitive physical performance and ‘success’ in professional soccer, b) current approaches to interpreting differences in time-motion analysis data across playing positions and, c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified
- …
