371,000 research outputs found

    Life in Communities

    Get PDF
    Given the widely recognized danger the worldā€™s languages face at the present time, there has been a major expansion of language documentation and linguistic description, which requires what has been traditionally referred to as linguistic fieldwork. We generally prepare our students to undertake this work through field methods courses but ā€œ[w]hile we generally do a very thorough job of teaching how to elicit and analyze data, we often forget to tell them that there is a personal and practical side to fieldwork that can very well derail their research if they are not prepared for it.ā€ (Macauley, 2004:194). The overall goal of this workshop is, therefore, to familiarize the students with the personal and practical dimensions of fieldwork.2015 NSF/BCS 1500841: CoLang 2016: Institute on Collaborative Language Research ā€“ ALASKA Alaska Native Language Cente

    A guide to time-resolved and parameter-free measures of spike train synchrony

    Full text link
    Measures of spike train synchrony have proven a valuable tool in both experimental and computational neuroscience. Particularly useful are time-resolved methods such as the ISI- and the SPIKE-distance, which have already been applied in various bivariate and multivariate contexts. Recently, SPIKE-Synchronization was proposed as another time-resolved synchronization measure. It is based on Event-Synchronization and has a very intuitive interpretation. Here, we present a detailed analysis of the mathematical properties of these three synchronization measures. For example, we were able to obtain analytic expressions for the expectation values of the ISI-distance and SPIKE-Synchronization for Poisson spike trains. For the SPIKE-distance we present an empirical formula deduced from numerical evaluations. These expectation values are crucial for interpreting the synchronization of spike trains measured in experiments or numerical simulations, as they represent the point of reference for fully randomized spike trains.Comment: 8 pages, 4 figure

    The Computational Structure of Spike Trains

    Full text link
    Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal state models (CSMs), the minimal hidden Markov models or stochastic automata capable of generating statistically identical time series. We then use these CSMs to objectively quantify both the generalizable structure and the idiosyncratic randomness of the spike train. Specifically, we show that the expected algorithmic information content (the information needed to describe the spike train exactly) can be split into three parts describing (1) the time-invariant structure (complexity) of the minimal spike-generating process, which describes the spike train statistically; (2) the randomness (internal entropy rate) of the minimal spike-generating process; and (3) a residual pure noise term not described by the minimal spike-generating process. We use CSMs to approximate each of these quantities. The CSMs are inferred nonparametrically from the data, making only mild regularity assumptions, via the causal state splitting reconstruction algorithm. The methods presented here complement more traditional spike train analyses by describing not only spiking probability and spike train entropy, but also the complexity of a spike train's structure. We demonstrate our approach using both simulated spike trains and experimental data recorded in rat barrel cortex during vibrissa stimulation.Comment: Somewhat different format from journal version but same conten

    Spikes for the Gierer-Meinhardt system with discontinuous diffusion coefficients

    Get PDF
    The original publication is available at http://www.springerlink.com/content/vw2m382276u4g814/We rigorously prove results on spiky patterns for the Gierer-Meinhardt system with a jump discontinuity in the diffusion coefficient of the inhibitor. Firstly, we show the existence of an interior spike located away from the jump discontinuity, deriving a necessary condition for the position of the spike. In particular we show that the spike is located in one-and-only-one of the two subintervals created by the jump discontinuity of the inhibitor diffusivity. This localisation principle for a spike is a new effect which does not occur for homogeneous diffusion coefficients. Further, we show that this interior spike is stable. Secondly, we establish the existence of a spike whose distance from the jump discontinuity is of the same order as its spatial extent. The existence of such a spike near the jump discontinuity is the second new effect presented in this paper. To derive these new effects in a mathematically rigorous way, we use analytical tools like Liapunov-Schmidt reduction and nonlocal eigenvalue problems which have been developed in our previous work. Finally, we confirm our results by numerical computations for the dynamical behavior of the system. We observe a moving spike which converges to a stationary spike located in the interior of one of the subintervals or near the jump discontinuity

    Asynchronous response of coupled pacemaker neurons

    Full text link
    We study a network model of two conductance-based pacemaker neurons of differing natural frequency, coupled with either mutual excitation or inhibition, and receiving shared random inhibitory synaptic input. The networks may phase-lock spike-to-spike for strong mutual coupling. But the shared input can desynchronize the locked spike-pairs by selectively eliminating the lagging spike or modulating its timing with respect to the leading spike depending on their separation time window. Such loss of synchrony is also found in a large network of sparsely coupled heterogeneous spiking neurons receiving shared input.Comment: 11 pages, 4 figures. To appear in Phys. Rev. Let
    • ā€¦
    corecore