108,322 research outputs found
X ray microscope assembly and alignment support and advanced x ray microscope design and analysis
Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations
Water window imaging x ray microscope
A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope
Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror
Efficient collection and analysis of trapped ion qubit fluorescence is
essential for robust qubit state detection in trapped ion quantum computing
schemes. We discuss simple techniques of improving photon collection efficiency
using high numerical aperture (N.A.) reflective optics. To test these
techniques we placed a spherical mirror with an effective N.A. of about 0.9
inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate
stable and reliable trapping of single barium ions, in excellent agreement with
our simulations of the electric field in this setup. While a large N.A.
spherical mirror introduces significant spherical aberration, the ion image
quality can be greatly improved by a specially designed aspheric corrector lens
located outside the vacuum system. Our simulations show that the spherical
mirror/corrector design is an easy and cost-effective way to achieve high
photon collection rates when compared to a more sophisticated parabolic mirror
setup.Comment: 5 figure
Trapping and detection of single atoms using a spherical mirror
We fabricate a miniature spherical mirror for tightly focusing an optical
dipole trap for neutral atoms. The mirror formation process is modelled to
predict the dimensions for particular fabrication parameters. We integrate the
spherical mirror with a neutral atom experiment to trap and detect a single
atom with high efficiency. The mirror serves the dual purpose of focusing the
dipole trap as well as collection of the atomic fluorescence into an optical
fibre.Comment: 13 pages, 6 figure
Refractive index of a transparent liquid measured with a concave mirror
This paper describes the spherical concave mirror method for measuring the
index of refraction of transparent liquids. We derived the refractive index
equation using Snell's law and the small-angle approximation. We also verified
the validity of this method using the traditional spherical mirror and
thin-lens Gaussian equations.Comment: IOPart, 8 pages, 4 figure
QED with a spherical mirror
We investigate the Quantum-Electro-Dynamic properties of an atomic electron
close to the focus of a spherical mirror. We first show that the spontaneous
emission and excited state level shift of the atom can be fully suppressed with
mirror-atom distances of many wavelengths. A three-dimensional theory predicts
that the spectral density of vacuum fluctuations can indeed vanish within a
volume around the atom, with the use of a far distant mirror
covering only half of the atomic emission solid angle. The modification of
these QED atomic properties is also computed as a function of the mirror size
and large effects are found for only moderate numerical apertures. We also
evaluate the long distance ground state energy shift (Casimir-Polder shift) and
find that it scales as at the focus of a hemi-spherical mirror
of radius , as opposed to the well known scaling law for an
atom at a distance from an infinite plane mirror. Our results are relevant
for investigations of QED effects, and also free space coupling to single atoms
using high-numerical aperture lenses.Comment: 12 pages, 4 figure
Spherical mirror mount
A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes
Theoretical design and analysis of the layered synthetic microstructure optic for the dual path X-ray telescope
A ray tracing analysis was performed for several configurations for the inner channel of the dual path X-ray telescope, which is proposed to use the second mirror of the Stanford/MSFC Wolter-Schwarzchild telescope and a normal incident layered synthetic microstructure (LSM) mirror to form a secondary image near the front of the telescope. The LSM mirror shapes considered were spherical, ellipsoid, hyperboloid, and constant optical path length (OPL) aspheric. Only the constant OPL case gave good axial resolution. All cases had poor off axis resolution as judged by the RMS blur circle radius
Wide-angle flat field telescope
Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto
- …
