1,612,952 research outputs found

    Distilling Information Reliability and Source Trustworthiness from Digital Traces

    Full text link
    Online knowledge repositories typically rely on their users or dedicated editors to evaluate the reliability of their content. These evaluations can be viewed as noisy measurements of both information reliability and information source trustworthiness. Can we leverage these noisy evaluations, often biased, to distill a robust, unbiased and interpretable measure of both notions? In this paper, we argue that the temporal traces left by these noisy evaluations give cues on the reliability of the information and the trustworthiness of the sources. Then, we propose a temporal point process modeling framework that links these temporal traces to robust, unbiased and interpretable notions of information reliability and source trustworthiness. Furthermore, we develop an efficient convex optimization procedure to learn the parameters of the model from historical traces. Experiments on real-world data gathered from Wikipedia and Stack Overflow show that our modeling framework accurately predicts evaluation events, provides an interpretable measure of information reliability and source trustworthiness, and yields interesting insights about real-world events.Comment: Accepted at 26th World Wide Web conference (WWW-17

    Multipulse current source offers low power losses and high reliability

    Get PDF
    Pulse current source uses low loss, high reliability, LC circuits to provide the necessary high impedance for magnetic memory cores, frequently used in digital computational equipment. Square-loop reactors replace the semiconductor switches previously used

    Security versus Reliability Analysis of Opportunistic Relaying

    Full text link
    Physical-layer security is emerging as a promising paradigm of securing wireless communications against eavesdropping between legitimate users, when the main link spanning from source to destination has better propagation conditions than the wiretap link from source to eavesdropper. In this paper, we identify and analyze the tradeoffs between the security and reliability of wireless communications in the presence of eavesdropping attacks. Typically, the reliability of the main link can be improved by increasing the source's transmit power (or decreasing its date rate) to reduce the outage probability, which unfortunately increases the risk that an eavesdropper succeeds in intercepting the source message through the wiretap link, since the outage probability of the wiretap link also decreases when a higher transmit power (or lower date rate) is used. We characterize the security-reliability tradeoffs (SRT) of conventional direct transmission from source to destination in the presence of an eavesdropper, where the security and reliability are quantified in terms of the intercept probability by an eavesdropper and the outage probability experienced at the destination, respectively. In order to improve the SRT, we then propose opportunistic relay selection (ORS) and quantify the attainable SRT improvement upon increasing the number of relays. It is shown that given the maximum tolerable intercept probability, the outage probability of our ORS scheme approaches zero for NN \to \infty, where NN is the number of relays. Conversely, given the maximum tolerable outage probability, the intercept probability of our ORS scheme tends to zero for NN \to \infty.Comment: 9 pages. IEEE Transactions on Vehicular Technology, 201

    The Reliability Function of Lossy Source-Channel Coding of Variable-Length Codes with Feedback

    Full text link
    We consider transmission of discrete memoryless sources (DMSes) across discrete memoryless channels (DMCs) using variable-length lossy source-channel codes with feedback. The reliability function (optimum error exponent) is shown to be equal to max{0,B(1R(D)/C)},\max\{0, B(1-R(D)/C)\}, where R(D)R(D) is the rate-distortion function of the source, BB is the maximum relative entropy between output distributions of the DMC, and CC is the Shannon capacity of the channel. We show that, in this setting and in this asymptotic regime, separate source-channel coding is, in fact, optimal.Comment: Accepted to IEEE Transactions on Information Theory in Apr. 201
    corecore