418 research outputs found

    Sodium-mediated magnesiation of thiophene and tetrahydrothiophene : structural contrasts with furan and tetrahydrofuran

    Get PDF
    Sulfur-containing heterocycles are currently attracting agreat deal of interest in several diverse fields. For instance, substituted tetrahydrothiophenes have received considerable attention due to their extremely wide-ranging chemical and biological applications.These include their use as potent a-glucosidase inhibitors, as an inhibitor of copper amine oxidases and as selective A3 agonists and antagonists. In addition, they have been utilised in chemical transformations, such as catalytic asymmetric epoxidation, catalytic intramolecular cyclopropanation, and asymmetric metal catalysis hydrogenation. From a nanochemical perspective,the adsorption chemistries and physical propertiesof various thiophenes and tetrahydrothiophenes on gold surfaces have recently come to the fore.[7] Polythiophenes are also key compounds in modern materials research, currently utilised in, for example, the fabrication of semi-conducting, fluorescent, and electronic and optoelectronic materials.[8]In this work, metallation (exchange of a hydrogen atom with a metal atom) of the parent heterocycles, tetrahydrothiophene (THT) and thiophene is considered. Metallation is one of the most fundamental reactions in modern day synthesis and is a key tool in the preparation of functionalised aromaticand heterocyclic compounds. It is usually achieved bythe utilisation of commercially accessible organolithiums (or lithium amides); however, these reactions do have theirdrawbacks, including the intolerance of certain functionalgroups, the need for cryoscopic temperatures and the inadvertent reactivity with polar reaction solvents

    Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles

    Get PDF
    Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level

    A study of early afterdepolarizations in a model for human ventricular tissue

    Get PDF
    Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium

    Association between urinary sodium, creatinine, albumin, and long term survival in chronic kidney disease

    Get PDF
    Dietary sodium intake is associated with hypertension and cardiovascular risk in the general population. In patients with chronic kidney disease, sodium intake has been associated with progressive renal disease, but not independently of proteinuria. We studied the relationship between urinary sodium excretion and urinary sodium:creatinine ratio and mortality or requirement for renal replacement therapy in chronic kidney disease. Adults attending a renal clinic who had at least one 24-hour urinary sodium measurement were identified. 24-hour urinary sodium measures were collected and urinary sodium:creatinine ratio calculated. Time to renal replacement therapy or death was recorded. 423 patients were identified with mean estimated glomerular filtration rate of 48ml/min/1.73m<sup>2</sup>. 90 patients required renal replacement therapy and 102 patients died. Mean slope decline in estimated glomerular filtration rate was -2.8ml/min/1.73m<sup>2</sup>/year. Median follow-up was 8.5 years. Patients who died or required renal replacement therapy had significantly higher urinary sodium excretion and urinary sodium:creatinine but the association with these parameters and poor outcome was not independent of renal function, age and albuminuria. When stratified by albuminuria, urinary sodium:creatinine was a significant cumulative additional risk for mortality, even in patients with low level albuminuria. There was no association between low urinary sodium and risk, as observed in some studies. This study demonstrates an association between urinary sodium excretion and mortality in chronic kidney disease, with a cumulative relationship between sodium excretion, albuminuria and reduced survival. These data support reducing dietary sodium intake in chronic kidney disease but further study is required to determine the target sodium intake

    Remote functionalisation via sodium alkylamidozincate intermediates : access to unusual fluorenone and pyridyl ketone reactivity patterns

    Get PDF
    Treating fluorenone or 2-benzoylpyridine with the sodium zincate [(TMEDA)center dot Na(mu-Bu-t)(mu-TMP)Zn(Bu-t)] in hexane solution, gives efficient Bu-t addition across the respective organic substrate in a highly unusual 1,6-fashion, producing isolable organometallic intermediates which can be quenched and aerobically oxidised to give 3-tert-butyl-9H-fluoren-9-one and 2-benzoyl-5-tert-butylpyridine respectively

    LiTMP trans-metal-trapping of fluorinated aromatic molecules : a comparative study of Al and Ga carbanion traps

    Get PDF
    Fluoro aromatic scaffolds pose a challenge to lithiation due to low stability of lithiated intermediates. Here we apply trans-metal-trapping (TMT) to a series of key fluorinated aromatics. In TMT, LiTMP performs the metallation, while an organometallic trap intercepts the emergent carbanion. This study contrasts the trapping abilities of iBu2AlTMP and Ga(CH2SiMe3)3, structurally mapping their TMT reactions and probing relative stabilities of metallated fluoroaromatic intermediates by NMR studies. Results show the installed Al-C(aryl) bonds are more prone to decomposition by benzyne formation and Li-F liberation, than the Ga-C(aryl) species. The latter are thus better for onward reactivity as demonstrated in cross-coupling reactions with benzoyl chloride that produce ketones

    Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances

    Get PDF
    The hypothalamic melanocortin system is crucial for the control of appetite and body weight. Two of the five melanocortin receptors, MC3R and MC4R are involved in hypothalamic control of energy homeostasis, with the MC4R having the major influence. It is generally thought that the main impact of the melanocortin system on hypothalamic circuits is external to the arcuate nucleus, and that any effect locally in the arcuate nucleus is inhibitory on proopiomelanocortin-expressing (POMC) neurons. In contrast, using current- and voltage-clamp recordings from identified neurons, we demonstrate that MC3R and MC4R agonists depolarize arcuate POMC neurons and a separate arcuate neuronal population identified by the rat insulin 2 promoter (RIPCre) transgene expression. Furthermore, the endogenous MC3R and MC4R antagonist, agouti-related protein (AgRP), hyperpolarizes POMC and RIPCre neurons in the absence of melanocortin agonist, consistent with inverse agonism at the MC4R. A decreased transient outward (I(A)) potassium conductance, and to a lesser extent the inward rectifier (K(IR)) conductance, underlies neuronal depolarization, whereas an increase in I(A) mediates AgRP-induced hyperpolarization. Accordingly, POMC and RIPCre neurons may be targets for peptide transmitters that are possibly released locally from AgRP-expressing and POMC neurons in the arcuate nucleus, adding further previously unappreciated complexity to the arcuate system

    Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient.

    Get PDF
    BACKGROUND: Adoptive T-cell based immunotherapies constitute a promising approach to treat cancer, however, a major problem is to obtain effective and long-lasting anti-tumor responses. Lack of response may be due to insufficient trafficking of specific T cells to tumors. A key requirement for efficient migration of cytotoxic T cells is that they express chemokine receptors that match the chemokines produced by tumor or tumor-associated cells. METHODS: In this study, we investigated whether the in vivo tumor trafficking of activated T cells could be enhanced by the expression of the chemokine receptor CX3CR1. Two human colorectal cancer cell lines were used to set up a xenograft tumor model in immunodeficient mice; the NCI-H630, constitutively expressing the chemokine ligand CX3CL1 (Fractalkine), and the RKO cell line, transduced to express CX3CL1. RESULTS: Human primary T cells were transduced with the receptor CX3CR1-eGFP. Upon in vivo adoptive transfer of genetically modified CX3CR1-T cells in mice bearing NCI-H630 tumors, enhanced lymphocyte migration and tumor trafficking were observed, compared to mice receiving Mock-T cells, indicating improved homing ability towards ligand-expressing tumor cells. Furthermore, significant inhibition of tumor growth was found in mice receiving modified CX3CR1-T cells. In contrast, tumors formed by RKO cells transduced with the ligand (RKO-CX3CL1) were not affected, nor more infiltrated upon transfer of CX3CR1-T lymphocytes, likely because high levels of the chemokine were shed by tumor cells in the systemic circulation, thus nullifying the blood-tissue chemokine gradient. CONCLUSIONS: This study demonstrates that ectopic expression of CX3CR1 enhanced the homing of adoptively transferred T cells towards CX3CL1-producing tumors, resulting in increased T cell infiltration in tumor tissues and decreased tumor growth. Our results also establish that a correct chemokine gradient between the systemic circulation and the tumor is an essential requirement in adoptive T-cell based immunotherapy to efficiently recruit T cell effectors at the correct sites

    Neuroprotection by safinamide in the 6-hydroxydopamine model of Parkinson's disease

    Get PDF
    AIMS: Current therapies in Parkinson's disease mainly treat symptoms rather than provide effective neuroprotection. We examined the effects of safinamide (monoamine oxidase B and sodium channel blocker) on microglial activation and the degeneration of dopaminergic neurons in a rat model of PD in vivo, and on microglia in vitro. METHODS: Rats received unilateral stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle on day 0: The contralateral side served as control. Safinamide or vehicle was delivered from days 0 or 1, for 7 days, via sub-cutaneous mini-pumps. RESULTS: In vehicle-treated rats 6-hydroxydopamine caused a significant increase in the number of activated MHC-II(+) microglia compared with the contralateral side, and only 50% of the dopaminergic neurons survived in the ipsilateral SNc. In contrast, rats treated daily with safinamide 50 and 150 mg/ml (on day 0 or 1) exhibited a significantly reduced number of activated microglia (55% reduction at 150 mg/ml) and a significant protection of dopaminergic neurons (80% of neurons survived) (P < 0.001) compared with vehicle-treated controls. Rasagiline, a monoamine oxidase B inhibitor, and lamotrigine, a sodium channel blocking drug, also protected dopaminergic neurons, indicating that safinamide may act by either or both mechanisms. Safinamide also reduced the activation of microglial cells in response to lipopolysaccharide exposure in vitro. CONCLUSION: Safinamide therapy suppresses microglial activation and protects dopaminergic neurons from degeneration in the 6-hydroxydopamine model of PD, suggesting that the drug not only treats symptoms but also provides neuroprotection

    Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: Importance of the chemokine gradient

    Get PDF
    Background: Adoptive T-cell based immunotherapies constitute a promising approach to treat cancer, however, a major problem is to obtain effective and long-lasting anti-tumor responses. Lack of response may be due to insufficient trafficking of specific T cells to tumors. A key requirement for efficient migration of cytotoxic T cells is that they express chemokine receptors that match the chemokines produced by tumor or tumor-associated cells. Methods: In this study, we investigated whether the in vivo tumor trafficking of activated T cells could be enhanced by the expression of the chemokine receptor CX3CR1. Two human colorectal cancer cell lines were used to set up a xenograft tumor model in immunodeficient mice; the NCI-H630, constitutively expressing the chemokine ligand CX3CL1 (Fractalkine), and the RKO cell line, transduced to express CX3CL1. Results: Human primary T cells were transduced with the receptor CX3CR1-eGFP. Upon in vivo adoptive transfer of genetically modified CX3CR1-T cells in mice bearing NCI-H630 tumors, enhanced lymphocyte migration and tumor trafficking were observed, compared to mice receiving Mock-T cells, indicating improved homing ability towards ligand-expressing tumor cells. Furthermore, significant inhibition of tumor growth was found in mice receiving modified CX3CR1-T cells. In contrast, tumors formed by RKO cells transduced with the ligand (RKO-CX3CL1) were not affected, nor more infiltrated upon transfer of CX3CR1-T lymphocytes, likely because high levels of the chemokine were shed by tumor cells in the systemic circulation, thus nullifying the blood-tissue chemokine gradient. Conclusions: This study demonstrates that ectopic express
    corecore