884,461 research outputs found
Explosively activated egress area
A lightweight, add on structure which employs linear shaped pyrotechnic charges to smoothly cut an airframe along an egress area periphery is provided. It compromises reaction surfaces attached to the exterior surface of the airframe's skin and is designed to restrict the skin deflection. That portion of the airframe within the egress area periphery is jettisoned. Retention surfaces and sealing walls are attached to the interior surface of the airframe's skin and are designed to shield the interior of the aircraft during detonation of the pyrotechnic charges
Some aerodynamic considerations related to wind tunnel model surface definition
The aerodynamic considerations related to model surface definition are examined with particular emphasis in areas of fabrication tolerances, model surface finish, and orifice induced pressure errors. The effect of model surface roughness texture on skin friction is also discussed. It is shown that at a given Reynolds number, any roughness will produce no skin friction penalty
Direct measurements and analysis of skin friction and cooling downstream of multiple flush-slot injection into a turbulent Mach 6 boundary layer
Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data
An Inverse Geometry Problem for the Localization of Skin Tumours by Thermal Analysis
In this paper, the Dual Reciprocity Method (DRM) is coupled to a Genetic Algorithm (GA) in an inverse procedure through which the size and location of a skin tumour may be obtained from temperature measurements at the skin surface. The GA is an evolutionary process which does not require the calculation of sensitivities, search directions or the definition of initial guesses. The DRM in this case requires no internal nodes. It is also shown that the DRM approximation function used is not an important factor for the problem considered here. Results are presented for tumours of different sizes and positions in relation to the skin surface
Shearing-Stress Measurements by use of a Heated Element
The rate of local heat transfer from a solid surface to a moving fluid is related to the local skin frinction. Measurements of the heat transmission from small elements embedded in the surface of a solid can thus be used to botain local skin-friction coefficients. This method was applied by Fage and Falkner for laminar boundary layers and by Ludwieg for turbulent boundary layers. The present report discussed the possible range of application of such an instrument in low- and high-speed flow and presents experimental data to show that a very simple instrument can be used to obtain laminar and turbulent skin-friction coefficients with a single calibration. The instrument consists of an ordinary hot-wire cemented into a groove in the surface. The heat loss from the wire is proportional to the cube root of the wall shearing stress, and the constant of proportionality may be found by one calibration, for example, in laminar flow
Anisotropic dehydration of hydrogel surfaces
Efforts to develop tissue-engineered skin for regenerative medicine have explored natural, synthetic, and hybrid hydrogels. The creation of a bilayer material, with the stratification exhibited by native skin is a complex problem. The mechanically robust, waterproof epidermis presents the stratum corneum at the tissue/air interface, which confers many of these protective properties. In this work we explore the effect of high temperatures on alginate hydrogels, which are widely employed for tissue engineering due to their excellent mechanical properties and cellular compatibility. In particular, we investigate the rapid dehydration of the hydrogel surface which occurs following local exposure to heated surfaces with temperatures in the range 100-200 oC. We report the creation of a mechanically strengthened hydrogel surface, with improved puncture resistance and increased coefficient of friction, compared to the unheated surface. The use of a mechanical restraint during heating promoted differences in the rate of mass loss; the rate of temperature increase within the hydrogel, in the presence and absence of restraint, is simulated and discussed. It is hoped that the results will be of use in the development of processes suitable for preparing skin-like analogues; application areas could include wound healing and skin restoration
Applied of image processing technique on semi-auto count of skin spot
Skin is the biggest organ in the human body and works to separate the inner body part from outer environment. In the skin, there are sebaceous glands found inside the pores of the skin. They are at all over the body except for the palms of the hands and the feet soles. There are more sebaceous glands on the face and scalp than elsewhere. Sebaceous gland secretes an oily protective skin surface, sebum, which is against pathogens and also help to slow down the skin ageing process [1]. They can help to maintain the moisture of the skin. However, the sebaceous glands become overactive sometimes, thus, producing too much sebum and the pores can get clogged together with dead skin [2][3]. This will results in having blackheads along with other factors. Blackhead is one of an acne vulgaris type [4]. It is a small dark spots on the skin that sometimes hard to be seen under a naked eye. If the clogged pores infect the glands, the accumulated sebum may form a sac and slowly increase in size. Lack of sebum production can also provide unsatisfied result that could cause dry skin, which makes the skin, looks rough and dull
Origin of the neutron skin thickness of 208Pb in nuclear mean-field models
We study whether the neutron skin thickness (NST) of 208Pb originates from
the bulk or from the surface of the nucleon density distributions, according to
the mean-field models of nuclear structure, and find that it depends on the
stiffness of the nuclear symmetry energy. The bulk contribution to NST arises
from an extended sharp radius of neutrons, whereas the surface contribution
arises from different widths of the neutron and proton surfaces. Nuclear models
where the symmetry energy is stiff, as typical relativistic models, predict a
bulk contribution in NST of 208Pb about twice as large as the surface
contribution. In contrast, models with a soft symmetry energy like common
nonrelativistic models predict that NST of 208Pb is divided similarly into bulk
and surface parts. Indeed, if the symmetry energy is supersoft, the surface
contribution becomes dominant. We note that the linear correlation of NST of
208Pb with the density derivative of the nuclear symmetry energy arises from
the bulk part of NST. We also note that most models predict a mixed-type
(between halo and skin) neutron distribution for 208Pb. Although the halo-type
limit is actually found in the models with a supersoft symmetry energy, the
skin-type limit is not supported by any mean-field model. Finally, we compute
parity-violating electron scattering in the conditions of the 208Pb parity
radius experiment (PREX) and obtain a pocket formula for the parity-violating
asymmetry in terms of the parameters that characterize the shape of the 208Pb
nucleon densities.Comment: 11 pages, 4 figures; minor stylistic changes in text, new Ref. [56]
added (new measurement of the neutron skin thickness of 208Pb
Nuclear symmetry energy and neutron skin thickness
The relation between the slope of the nuclear symmetry energy at saturation
density and the neutron skin thickness is investigated. Constraints on the
slope of the symmetry energy are deduced from the neutron skin data obtained in
experiments with antiprotonic atoms. Two types of neutron skin are
distinguished: the "surface" and the "bulk". A combination of both types forms
neutron skin in most of nuclei. A prescription to calculate neutron skin
thickness and the slope of symmetry energy parameter from the parity
violating asymmetry measured in the PREX experiment is proposed.Comment: 12 pages, 5 figures, Presented at XXXII Mazurian Lakes Conference on
Physics, Piaski, Poland, September 11-18, 201
- …
