1,889,334 research outputs found

    LAWS OF SIMPLICITY

    Get PDF

    Difficulties of Simplicity

    Get PDF
    This paper attempts to show that the doctrine of divine simplicity suffers from difficulties which undermine its plausibility. The main difficulties explored are Plantinga’s problem of double identification, Pruss’ multiple attributes problem, and Schmitt’s co-specificity problem. In more recent years, defenders of the doctrine have offered a way out of these problems by interpreting it in light of a truthmaker account of predication. This paper analyzes this recent defense, among others, and attempts to show that this new interpretation of divine simplicity still has problems which undermine the plausibility of the doctrine

    Pseudofinite structures and simplicity

    Get PDF
    We explore a notion of pseudofinite dimension, introduced by Hrushovski and Wagner, on an infinite ultraproduct of finite structures. Certain conditions on pseudofinite dimension are identified that guarantee simplicity or supersimplicity of the underlying theory, and that a drop in pseudofinite dimension is equivalent to forking. Under a suitable assumption, a measure-theoretic condition is shown to be equivalent to local stability. Many examples are explored, including vector spaces over finite fields viewed as 2-sorted finite structures, and homocyclic groups. Connections are made to products of sets in finite groups, in particular to word maps, and a generalization of Tao's algebraic regularity lemma is noted

    Asymptotic simplicity and static data

    Full text link
    The present article considers time symmetric initial data sets for the vacuum Einstein field equations which in a neighbourhood of infinity have the same massless part as that of some static initial data set. It is shown that the solutions to the regular finite initial value problem at spatial infinity for this class of initial data sets extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data sets coincide with static data in a neighbourhood of infinity. This result highlights the special role played by static data among the class of initial data sets for the Einstein field equations whose development gives rise to a spacetime with a smooth conformal compactification at null infinity.Comment: 25 page

    Map Matching with Simplicity Constraints

    Get PDF
    We study a map matching problem, the task of finding in an embedded graph a path that has low distance to a given curve in R^2. The Fr\'echet distance is a common measure for this problem. Efficient methods exist to compute the best path according to this measure. However, these methods cannot guarantee that the result is simple (i.e. it does not intersect itself) even if the given curve is simple. In this paper, we prove that it is in fact NP-complete to determine the existence a simple cycle in a planar straight-line embedding of a graph that has at most a given Fr\'echet distance to a given simple closed curve. We also consider the implications of our proof on some variants of the problem
    corecore