EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Map matching with simplicity constraints

Citation for published version (APA):
Meulemans, W. (2013). Map matching with simplicity constraints. (arXiv.org; Vol. 1306.2827 [cs.CG]). s.n.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/567c4825-8d0c-45c2-94ca-548d8127c7a4

arXiv:1306.2827v1 [cs.CG] 12 Jun 2013

Map Matching with Simplicity Constraints

Wouter Meulemans™*

Abstract

We study a map matching problem, the task of finding in an embedded graph a path that
has low distance to a given curve in R%2. The Fréchet distance is a common measure for this
problem. Efficient methods exist to compute the best path according to this measure. However,
these methods cannot guarantee that the result is simple (i.e. it does not intersect itself) even
if the given curve is simple. In this paper, we prove that it is in fact NP-complete to determine
the existence a simple cycle in a planar straight-line embedding of a graph that has at most a
given Fréchet distance to a given simple closed curve. We also consider the implications of our
proof on some variants of the problem.

1 Introduction

Map matching is the task of finding in an embedded graph a path that resembles a give curve. One
of the main applications is finding driven routes in a road network based on a sequence of GPS
positions [7, [9]. The Fréchet distance is a prominent similarity measure for this problem. This
distance can be computed efficiently for two polygonal curves [2, [4] and for a polygonal curve and
an embedded graph [I, 9]. However, these methods cannot guarantee that the result is a simple
path. Here we focus on the map matching problem under the Fréchet distance with such simplicity
constraints. To properly define the problem, we first introduce some terminology and notation.

Preliminaries. A curve C is a continuous function to R?. An open curve uses [0, 1] as domain,
C:[0,1] — R2. A closed curve uses the unit circle S' as domain, C: S' — R2. A curve is called
simple if it does not overlap itself, i.e. C(t) # C(t') for any distinct ¢ and ¢’ from the domain.

Let Cq and Cy denote two open or two closed curves, and D their domain (i.e. [0, 1] for open
curves; S! for closed curves). Let ¥ be the set of orientation-preserving homeomorphisms for D.
Then the Fréchet distance between C7 and Cy is defined as

dp(C1,C2) = égfy IgéaDX{’Cl(t) — Co(y ()1},
where |z — y| denotes the Euclidean distance between points z and y in R?. In other words, it is
the maximal distance obtained by a monotonous “reparameterization” of Cy. The weak Fréchet
distance is a variant characterized by allowing non-monotonous reparameterizations.

We refer to a planar straight-line embedding of a graph in R? as a network. A path or cycle in
the network is called simple if it visits each vertex at most once. A path or cycle is also a curve
and thus the Fréchet distance is defined for these.

Problem statement and contributions. Let G be a network and let C' be a simple closed curve.
We study the problem of determining the existence of a simple cycle P in G with dp(C, P) < e.
This problem is invariant under scaling; hence we assume without loss of generality that ¢ is 1.
We prove that this problem is NP-complete (Section . The problem also admits a number of
variants. In Section [3| we consider the implications of our proof on some of these variants.

Related work. A large number of papers are concerned with map matching problems, e.g. [1}3]7,9].
Here we focus on establishing the complexity of variants under the Fréchet distance. Alt et al. [1]
describe an algorithm that decides whether a path exists in O(mnlogn) time, where m and n are

*Dept. of Mathematics and Computer Science, TU Eindhoven, The Netherlands, w.meulemans@tue.nl.

the number of vertices of the (polygonal) curve and the network respectively. Though “U-turns”
can be avoided, no general simplicity guarantees are possible. Similarly, the decision problem for
the weak Fréchet distance can be solved in O(mn) time [3]. The algorithmic complexity for map
matching with simplicity constraints (under any reasonable metric) seems to be open. Studying a
slightly different problem, Sherette and Wenk [8] show that it is NP-hard to determine the existence
of a simple curve on a 2D surface with holes or in 3D. However, their proof does not extend to the
case where the input curve is simple.

2 Simple map matching is NP-complete

In this section, we prove the following theorem.

Theorem 1 Let G be a planar straight-line embedding of a graph (a network) and let C' be a simple
closed curve. It is NP-complete to decide whether G contains a simple cycle P with dp(C, P) < 1.

The problem is in NP since the Fréchet distance can be computed in polynomial time [2] and it is
straightforward to check simplicity. In the remainder of the section, we prove that the problem is
also NP-hard.

Planar 3-SAT. We give a reduction from planar 3-SAT. For any planar 3-SAT formula F', we show
how to construct network G and simple closed curve C such that G contains a simple cycle P
with dp(C, P) < 1 if and only if F is satisfiable. Lichtenstein [6] showed that planar 3-SAT is
NP-hard. Knuth and Raghunathan [5] proved that it remains NP-hard, even if a specific rectilinear
embedding is given. In this embedding each variable and clause occupies a rectangular area; the
variables lie on a horizontal line; and all links relating variables to clauses are strictly vertical (see
Figure [Ia)). However, this is not exactly the embedding we use for construct the network and
curve. A requirement of our reduction is that the clauses have a small fixed width and thus cannot
be stretched horizontally. We observe that a single bend for the two “outer” edges of a clause are
sufficient to ensure this (see Figure [I[b)).

As is common in reductions from planar 3-SAT, we define a number of gadgets. We define variable
gadgets, clause gadgets, and propagation gadgets which represents the variables, clauses, and edges
of F' respectively. Based on these, we construct a network and a simple closed curve which together
represent F. The result of this construction is illustrated in Figure (c) The reduction is split
into two parts. In Section we present the reduction based on a specification of gadgets. In
Section we provide the details for each gadget.

2.1 Proof with gadget specifications

Each gadget specifies part of the network and part of the closed curve. We call these the local
network and local curve of a gadget. The gadgets interact via vertices and edges shared by their
local networks. There is no interaction based on the curve itself.

For now, we abstract from the details of the local network and curve. We first give only specifica-
tions for the gadgets; we describe their desired behavior. Based on this specification, we complete
the reduction. In Section we give the construction for each gadget.

For a cycle to exist in the total network, some simple path in the local network must have Fréchet
distance at most 1 to the local curve. Choosing a certain path “claims” its vertices and edges: the
shared vertices and edges can no longer be used by another gadget. This results in pressure on
the other gadget to choose a different path. A gadget has a number of pressure ports. These ports
correspond to an edge (and its vertices) of the local network that may be shared with another
gadget. A port may receive pressure, indicating that the shared edge or its vertices may not be
used in the gadget. Similarly, it may give pressure, indicating that the shared edge or its vertices
may not be used by other gadgets.

r1Vxo VI3
L1

| x1Vaxe VT |

| |

xo V 23V x4

Xro Tq

To Va3V 2y

| 21 VT3 VT |

1 VT2V Ty

al o Vs VI3

~
S t
P LL P \L T LL
T T2 T3 L4
F | F F F I
s’ 1 t/
L
Ly o VI3V x4
A
TT- X V To V T4

()

Figure 1: (a) 3-SAT formula given as a rectilinear drawing [5]. (b) The same embedding but with
bends and a fixed width for clauses. (c¢) Result of the construction. Each gray block represents a
gadget. The red lines connect the various gadgets to obtain a single closed curve.

The local curves must be joined carefully, ensuring that the total curve is a simple closed curve.
Each gadget has two curve gates that correspond to the endpoints of the local curve. Later, we
show how to connect these gates such that the total curve is indeed a simple closed curve. The total
network is the union of all local networks and some additional edges used to connect the gates.

In the following paragraphs, we give the specifications for the three gadgets. Each specification
consists of the following items:

e its behavior in terms of its ports;
e a rectilinear bounding polygon that contains the local network and local curve;
e the placement of its two gates and its ports.

We give specifications for clauses and edges occurring above the variables in the embedded formula.
Gadgets for clauses and edges below are defined analogously.

For each of the gadgets, we also give a visual representation on an integer grid. The bounding
polygon is given with a black outline; the ports are represented with thick green lines; the gates
are represented with red dots.

Propagation gadget. Each edge of the embedded formula is represented by a propagation gadget.
The propagation gadget can be considered as a “thick edge”. If the edge has a bend, then the
gadget also has a bend. A visualization of the gadget is given in Figure

24 v

kl

Figure 2: Specification of a propagation gadget. The bounding polygon is given in black; the red
dots represent gates; the green segments indicate ports. (left) No bend, k£ > 6. (middle) A right
bend, k, k" > 5. (right) A left bend, k, k" > 5.

The gadget has two ports representing the endpoints of the edge. The gadget cannot choose a
path for its local curve if both ports receive pressure. If one port receives pressure, the other gives
pressure: as the name suggests, the gadget propagates pressure. The gadget may also give pressure
on both of its ports.

The propagation gadget has a bounding polygon that is a “thick edge”, having a thickness of 4.
If there is no bend, it is specified as ((0,0); (4,0); (4, k); (0, k)) with k& > 6. If there is a right bend,
it is specified as ((0,0);(4,0); (4,k); (4 + K, k); 4+ K,k +4);(0,k + 4)) with k, k" > 5. If there is
a left bend, it is specified as ((0,0); (4,0); (4, k +4); (=K', k +4); (=K', k); (0, k)) with k, k' > 5. We
specify coordinates assuming that the left endpoint of the bottom side is at (0,0). However, the
gadget is translation invariant and thus can be placed anywhere for the reduction.

The gates are located at distance 1 from the bottom side, i.e. at (0,1) and at (4,1). One of the
ports is located on the bottom side, from (0,2) to (0,3). The other port is located on the other
side of length 4. If there is no bend, it is from (k,2) to (k,3). If there is a right bend, it is from
4+ K, k+1) to (4+ K, k+2). If there is a left bend, it is from (=K', k + 2) to (=K', k + 3).
On the sides that contain a port, the local network has no edges or vertices (except for those
representing the port). Also, the local curve does not overlap these sides. This ensures that there is
no interaction between gadgets other than via the ports and that the local curves do not intersect.

Variable gadget. The specification of a variable gadget depends on the number of edges incident
to it. It has zero or more incident edges from above, and zero or more from below. Let k£ denote
the maximum of the number of incident edges from above and the number of incident edges from
below. We assume that & > 0. A variable with £ = 0 does not occur in the formula and can be
safely omitted. A visualization of the gadget is given in Figure

This gadget has exactly two choices for its path: one corresponds to the T-state (true state),
the other to the F-state (false state). It has a number of multiple ports along its top and bottom
boundary that give or receive pressure depending on the state. A T-port (true port) gives pressure
in the T-state and may receive pressure in the F-state. Similarly, a F-port (false port) gives
pressure in the F-state and may receive pressure in the T-state. For each occurrence (each edge in
the embedded formula), the variable gadget has one T-port and one F-port; these are adjacent.

The bounding polygon is a rectangle that depends on the value of k. It has a width of 4411 - k.
The height is fixed at 16.

The gates are both located on the left side, at a distance 5 and 7 from the top side. The T-
and F-ports are located on the top and bottom boundary of the bounding polygon. They occur in
pairs, one T-port and one F-port, with a distance of 1 between the two. Between two pairs, there

16

15 26

Figure 3: Specification of a variable gadget. (left) &k = 1. (right) k = 2.

is a distance of 8. The leftmost and rightmost pair have a distance of 6 to the left and right side
respectively. For the pairs on the top side, the T-port is left of the F-port; for the bottom boundary
this is reversed. There are k pairs on the top side, and k pairs on the bottom side.

Clause gadget. The clause gadget has a simple, fixed specification. A
visualization of the gadget is given in Figure [4

This gadget has three ports. The clause gadget can choose a path
if and only if it does mot receive pressure on one of its ports. That is,
any path causes on of its ports to give pressure. The lack of pressure
on a port corresponds to the state of the variable being such that the
literal is true. If none of the variables has a state such that the literal

>
@
[

>

is true, i.e. the clause is false, then all ports receive pressure and the e
clause gadget cannot choose a path.
The bounding polygon is a rectangle, with width 3 and height 8. Figure 4: Specification

The gates are both at the top side and have a distance 1 from the
left and right side and a distance 1 between them. The three ports are
placed on the three remaining sides. The bottom side has a port in the middle. The left and right
side have a port at a distance 3 from the top side.

of a clause gadget.

Construction with gadgets. With the gadgets defined above, we now construct the complete
network and simple closed curve based on the structure given by the (modified) embedded formula
F. Figure[f](c) illustrates the construction.

First, construct each variable gadget and place these on a horizontal line with a distance of 3
between consecutive variables. The order of the variables is given by the embedding of formula F.
No variables overlap due to the horizontal spacing.

For the placement of clause gadgets, we introduce dominance. Clause C' is said to dominate
clause C’ if there is a vertical line that intersects both C' and C’ (or the horizontal part of an
incident edge) in F' and C’ is below C. This induces a (transitive) partial order on the clauses. Let
dom(C') denote the clauses that are dominated by C. The dominance number of a clause is 0 if
dom(C') is empty; otherwise, it is 1 + K where K is the maximum dominance number of a clause
in dom(C). We can compute the dominance number of all clauses in polynomial time by traversing
the given embedding. We construct the clause gadgets and place them as follows. Assume the
middle literal is the ith incident edge from above for the corresponding variable. If the literal is
positive, we place the gadget with its bottom port above the ith F-port of the variable. If the
literal is negative, we place the gadget with its bottom port above the ith T-port of the variable.
We place the clause with its bottom at height 6 4+ 12k above the top (or below the bottom) of the
variable gadget where k is its dominance number. Since the height of a clause is 8, the vertical

distance between gadgets with a different dominance number is at least 4. Since k > 0, the gadgets
cannot overlap a variable gadget. Due to spacing between the ports, no two clause gadgets overlap.

We now construct and place the propagation gadgets. For each middle edge, we construct the
straight propagation gadget of the required length and place it between the clause and the variable.
By the placement rules of the clause, the ports match up correctly: that is, it is connected an
F-port if the literal is positive and to a T-port otherwise. For the outer edges, we construct the
propagation gadgets with a bend. Again, assume the edge is the ith incident edge from above
for the variable. We place it such that the bottom port connects to the ith F-port if the literal
is positive; to the ith T-port if the literal is negative. We give it the proper lengths such that
the top port connects to the port of the corresponding clause. Due to the spacing of the ports,
no two vertical parts of a propagation gadget overlap and a propagation gadget does not overlap
any variable gadget (except at the bottom port, as desired). Also, a propagation gadget does not
overlap a horizontal part of another propagation gadget nor does it overlap a clause gadget: such
overlaps would contradict the placement via the dominance number.

From the above, we now know how to compose the various gadgets in polynomial time. We
obtain a network, but we do not have a single closed curve: each gadget has its own local (open)
curve. What remains is to argue that we can “stitch” the parts together to form a single closed
curve. Since the (order of) the curve is not used to convey information, we may stitch the parts
together in any order. In particular, we proceed as follows to combine the variable gadgets and the
clause and propagation gadgets above the variables. We define a point s that is to the left of the
leftmost variable gadget and on the same height as the gates of the propagation gadgets (note that
these gates are all on the same height). We start at s and move to the right. When we reach a
distance of 2 before the left boundary of a variable gadget, we go down to connect to its lower gate,
traverse the gadget, go one step left from its upper gate and go back up to the height of p. When
we are at a distance of 2 before the left boundary of a propagation gadget that represents the left
edge in the embedding (i.e. it has a bend to the right), then we go up and to the right to connect
to the right gate of the corresponding clause gadget, traverse it, and go back after exiting from
its left gate. When we reach the gate of a propagation gate, we traverse it and continue from the
other gate. When we reach a distance that is to the right of the right boundary of the rightmost
variable gadget, we stop. We call this point ¢. Due to the spacing between the gadgets and ports,
this traversal does not intersect any gadgets and the described events do not coincide nor do they
occur within a propagation gadget. We add the traversal to the network and use it to define single
simple open curve from s to ¢ that visits the traversed gadgets. For the propagation and clause
gadgets below the variables, we use a similar procedure from point s’ to ¢’. The only difference is
that the variable gadgets need not be traversed. By adding the vertical connection between s and
s’ as well as between ¢ and ¢’ to the curves and network, we obtain a network G and a single simple
closed curve C. An example of the traversal is given in Figure [I](c).

Proving the theorem. We now have a network G and a simple closed curve C. Let n denote the
number of variables, and m the number of clauses in F'. We observe that 6 +n - (4+ 11-m + 3) is
an upper bound on the width, and 16 + 6 + 14 - m + 8 is an upper bound on the height of the grid
that is used for the network and curve. Hence, the space occupied is O(nm?). This bounds the size
of a propagation gadget and thus the reduction runs in polynomial time. To prove Theorem (1], we
must argue that G has a simple cycle P with dp(C, P) < 1 if and only if F' is satisfiable.

Assume that I is satisfiable and consider some satisfying assignment. We must now argue the
existence of a simple cycle P. For each variable gadget, we choose the local path that corresponds
to the T-state for a variable with the value true; we choose the local path that corresponds to the F-
state otherwise. This gives pressure on a number of propagation gadgets, and we choose the path for
these such that the clause on the other end receives pressure on its port. For the other propagation
gadgets, we choose the path such that it may receive pressure at the clause (and give pressure at
the variable). Since the truth values of the variables originate from a satisfying assignment, we

know that at most two ports of any clause receive pressure. Hence, by the specification, the clause
can choose a local simple path as well. We concatenate the local paths with the paths that are used
to stitch together the local curves of various gadgets to obtain a simple cycle P. By construction,
dp(C, P) is at most 1.

Now, assume that G contains a simple path P with dg(C,P) < 1. This must traverse each
variable gadget. Each path corresponds to either the T- or F-state. This directly yields the truth
values of the variables. Each clause gadget is also traversed and hence one or more of its ports give
pressure. This means that this also gives pressure to the variable gadget. This pressure ensures
that for this variable is in a state such that that clause is satisfied. Hence, the truth values give
rise to a satisfying assignment.

This proves the theorem. We have worked only with the specification of the gadgets. In the next
section, we implement the gadgets according to these specifications.

2.2 Gadget details

In the previous section, we have proven Theorem [I| with the specifications of three gadgets. In this
section, we show the how to construct the local network and local curve to meet these specifications.

We illustrate each of the constructions. We give the local network in thick gray lines and the
local curve as a red line, both placed on top of the visual representation of a gadget, given in the
previous section. We also give various path choices, these are given in blue. A choice of path leads
to pressure on the ports. Ports that give pressure are indicated with an outward arrow. The thick
green lines for ports are also used to indicate edges of intermediate construction blocks that are
shared with parts that are not visible in the illustration.

Propagation gadget. To construct a propagation gadget, we use a few simple building blocks.
A horizontal w-block defines a local network that consists of a rectangle of width w and height 1
and has two arms of length 1 protruding from the middle of the horizontal sides. Analogously, we
define a wertical h-block, with a rectangle of height h and width 1, with two arms protruding from
vertical sides. The curve for the block is a straight line between the far endpoints of the two arms.
We use only 1- and 2-blocks. These blocks have exactly two possible paths with Fréchet distance
at most 1 to the curve. The choice of path leads to the block giving pressure on one of its sides.
This is illustrated in Figure

ON == RIS =< RIS = L= o o

Figure 5: Building blocks used to construct a propagation gadget. The local network and local
curve are given in thick gray and thin red respectively. Possible paths are given in blue. (a) A
horizontal 2-block. (b) A vertical 1-block.

Now we wish to propagate pressure over a horizontal distance d with d > 6. To this end, we
concatenate a number of horizonal blocks, sharing the vertical sides of the rectangle. This results
in a horizontal chain. Such a chain has a required parity, indicating whether the number of blocks
used should be even or odd. The exact construction depends on the parity of d and whether the
parity of L%J matches the required parity. Refer to Figure |§| for examples. If d is even and the
parities match, we use g 2-blocks. If d is even and the parities do not match, we use a 2-block,
followed by two 1-blocks, followed by g — 2 2-blocks. If d is odd and the parities match, we use
a 2-block, followed by a 1-block, followed by % — 1 2-blocks. If d is odd and the parities do not
match, we use a 2-block, followed by three 1-blocks, followed by % — 2 2-blocks. The adjacent
blocks are joined by the endpoints of the arms, alternatingly above and below the rectangles. We
can choose the alternation freely, i.e. whether the left endpoint of the curve is above or below. In

o i R -
Wb -dfEd R

Figure 6: Chains of various length and parity requirement. (a) Odd parity with d = 6. (b) Odd
parity with d = 8. (c¢) Even parity with d = 7. (d) Even parity with d = 9.

o T TR TR TR
(b) ﬁ. fL. —'-—r.*

Figure 7: A bend is made by combining a horizontal and vertical 2-block. (a) A bend construction
with four possible paths. (b) The reduced construction with two possible paths.

each of the cases, we see that the chain starts with a 2-block and ends with a 2-block. Similarly,
we construct vertical chains. By construction, it is not possible to choose a path if both ends of a
chain receive pressure. Paths exists that result in a chain giving pressure at both of its endpoints.
These paths have no influence on the reduction and are omitted from the illustrations.

To make a bend we combine a horizontal and a vertical 2-block such that they share a vertex.
We require that the curve of the bend starts and ends at the far side of a block with respect to the
other block. This is illustrated in Figure El(a). The network edges of the arms on the near sides
need not be used by a path; this has no effect on the propagation of pressure. To obtain exactly two
choices, we omit these arms and use the bend construction given in Figure (b) By construction,
it is not possible to choose a path if both ends of a bend receive pressure.

Now we have the required pieces to construct a propagation gadget. If the gadget has no bend
and length k£ > 6, we construct a chain of that spans this distance with with odd parity (i.e. with
an odd number of blocks). We choose the alternation such that the bottom end of the curve is on
the right; the top end is on the left of the chain. We place the chain such that the bottom end of the
curve corresponds to the right gate. At the top end, we go one space to the left and then straight
down again to the left gate, adding this to the local network and local curve (See Figure [8{a)).

If the gadget has a right bend, a vertical length of k£ > 5, and horizontal length of ¥’ > 5, we
proceed as follows. We construct a vertical chain of length k + 1 with even parity and a horizontal
chain of length &’ with odd parity. We choose the alternation such that the bottom end of the
curve for the vertical chain is on the right; therefore the top end is on the right as well. We place

]

t
|_

]

Figure 8: Construction of the local network and local curve for a propagation gadget. (a) Without
a bend. (b) With a right bend. (c) With a left bend.

!

the vertical chain such that the bottom end of the curve corresponds to the right gate. We place
the horizontal chain, such that its leftmost block and the top block of the vertical chain form a
bend to the right. The alternation is chosen accordingly. Since the parity is odd, the curve then
ends above the chain. We go one space upwards, then back along bounding polygon of the gadget
to the left gate. This is illustrated in Figure (b) If the gadget has a left bend, the construction
is similar. However, now we use a vertical chain of length k£ + 2 with odd parity and a horizontal
chain of length k' + 2 with even parity. This is illustrated in Figure c).

Variable gadget. To construct a variable gadget, we reuse the 2-blocks used to construct a propa-
gation gadget. In addition, we need another building block that we call the occurrence block. The
occurrence block is illustrated in Figure [9] Its local network is shaped like a “tuning fork”: it has
two tines of height 5, both of width 1. These are a distance of 1 apart. It has exactly two choices
for its path, one for each tine. The left tine corresponds to a value “True” for the variable; the
right tine to a value “False”. The top end of the tines correspond to the T-ports and F-ports of the
variable gadget. We place the occurrence blocks accordingly within the gadget (see Figure [10[a)).

Figure 9: An occurrence block has two choices, one for each tine of the “tuning fork”.

We now need to ensure that all the occurrence blocks choose the same path. The occurrence
blocks must be consistent to have a consistent truth value for the variable. Using a tine also gives
pressure on its outer edge. Hence, we can use a horizontal chain of length 8 with even parity (that
is, four 2-blocks) to connect any two adjacent occurrence blocks. Moreover, we can use a chain with
2 bends to connect the two leftmost occurrence blocks; analogously, we connect the two rightmost
occurrence blocks. This ensures a consistent state, this is illustrated in Figure [10(b). To obtain
a single curve we connect the occurrence blocks and the chains in order. Moreover, we omit the
vertical connection between the two left arms on the left side to adhere to the gates. The full
construction is illustrated in Figure

| L R
bt | P

- - D -
I | || ET I |
(a) (b)
Figure 10: (a) Occurrence blocks in a variable gadget. (b) Using chains for a consistent state.
T F []
S S —

| FT

o

L
L

' ' ' '

Figure 11: The construction of a variable gadget with up to two incident edges from above and
from below. The bottom row shows the two states of the gadget.

10

Clause gadget. The clause gadget is illustrated in Figure[I2] It resembles an occurrence gadget: it
has been mirrored vertically and gained three edges in the local network at the bottom. Any choice
of a local path results in pressure on at least one port. Therefore, if all ports receive pressure, no
path can be chosen.

s RiR i [
8éll«l 1 Bul B i e i 1Inl- - -~
vl—-—l L Lid | | et | - L
LI \ } } }
3

Figure 12: A clause gadget with its path choices. Each choice gives pressure on at least one port.

3 Additional results

From Theorem (1] and its proof, we also obtain a number of related results.

Most importantly, we observe that none of the gadgets can choose a simple path with Fréchet
distance greater than 1 and less than /2. Hence, any polynomial-time approximation algorithm
with an approximation factor less than /2 would be able to decide whether the network G obtained
from our construction contains a simple cycle with Fréchet distance at most 1.

Corollary 1 Let G be a planar straight-line embedding of a graph (a network) and let C' be a
simple closed curve. It is NP-hard to approximate the minimal Fréchet distance dp(C, P) of any
simple cycle in G within a factor less than v/2.

Thus, in particular, no PTAS is possible for this problem. We observe that there are more path
choices for a Fréchet distance of 4/1.25 near the 1-blocks of a propagation gadget. However, these
do not modify the behavior of the gadget: one of its port must give pressure. For a Fréchet distance
of v/2, a bend (Figure [7)) can choose a path that gives pressure on neither of its ports. This allows
propagation gadgets to receive pressure on both gates and thus they would no longer adhere to the
specification. These bends are also used to obtain a consistent state within a variable gadget. As
a result of the bend no longer functioning, ports at the top and bottom may have different states.

Moreover, we may also observe that all interaction between and within gadgets is based on
edges. Hence, from the same construction, we know that it is NP-hard to determine the existence
of an “edge-simple” cycle that uses each edge at most once. There is in fact one exception: the
construction of a bend (Figure [7]). However, the possible choices for a path remain the same.

The proof straightforwardly extends to open curves and paths in the network. Omitting the
connection between s and s’ (see Figure [1)) yields a simple open curve, rather than a closed curve.
Also, generalizations of the problem in which the network is not a planar embedding or the curve
is not simple are NP-complete.

We also observe that the monotonicity of the Fréchet distance is not crucial in our proof. Hence,
the problem under the weak Fréchet distance is also NP-complete. Using the weak Fréchet distance
does allow for some more paths in the local networks. The occurrence block now has a path choice
that uses both “tines”. However, this choice cannot be used due to the circular pressure within
the variable gadget. In addition, the clause gadget now has a path choice that results in pressure
on both the left and right port (but not the bottom port); this choice adheres to the specification.
Hence, this change does not influence the proof.

11

4 Conclusions

We have shown that it is NP-complete to determine the existence of a simple cycle P in a network
such that the Fréchet distance of P to some given simple closed curve is at most 1. In addition, we
considered the implications of our proof an a number of variants of this problem.

Future work. An interesting question is to see what further restrictions we can pose on the input.
For example, the constructed network is relatively sparse and constructed specifically for the proof.
What if we restrict our choice in network, e.g. is the problem NP-complete if we restrict the network
to a regular square grid?

Acknowledgements. I would like to thank Kevin Buchin and Bettina Speckmann for reviewing
draft versions and helping me with the presentation of this paper.

References

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms, pages
9262283, 2003.

[2] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Inter-
national Journal of Computational Geometry and Applications, 5(1-2):78-99, 1995.

[3] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle Tracking Data.
In Proceedings of the 31st International Conference on Very Large Data Bases, pages 853-854,
2005.

[4] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four Soviets Walk the Dog—with an
Application to Alt’s Conjecture. CoRR, abs/1209.4403, 2012.

[5] D. Knuth and A. Raghunathan. The problem of compatible representatives. Discrete Compu-
tational Mathematics, 5:422—427, 1992.

[6] D. Lichtenstein. Planar formulae and their uses. SIAM Journal of Computing, 11:329-343,
1982.

[7] P. Newson and J. Krumm. Hidden Markov Map Matching Through Noise and Sparseness.
In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pages 336-343, 2009.

[8] J. Sherette and C. Wenk. Simple Curve Embedding. CoRR, abs/1303.0821, 2013.

[9] C. Wenk, R. Salas, and D. Pfoser. Addressing the Need for Map-Matching Speed : Localizing
Global Curve-Matching Algorithms. In Proceedings of the 18th International Conference on
Scientific and Statistical Database Management, pages 379-388, 2006.

12

	1 Introduction
	2 Simple map matching is NP-complete
	2.1 Proof with gadget specifications
	2.2 Gadget details

	3 Additional results
	4 Conclusions

