249 research outputs found

    Fabrication of bismuth nanowires with a silver nanocrystal shadowmask

    Get PDF
    We fabricated bismuth (Bi) nanowires with low energy electron beam lithography using silver (Ag) nanocrystal shadowmasks and a subsequent chlorine reactive ion etching. Submicron-size metal contacts on the single Bi nanowire were successfully prepared by in situ focused ion beam metal deposition for transport measurements. The temperature dependent resistance measurements on the 50 nm wide Bi nanowires showed that the resistance increased with decreasing temperature, which is characteristic of semiconductors and insulators

    Enhancement of Coherent X ray Diffraction from Nanocrystals by Introduction of X ray Optics

    Get PDF
    Coherent X-ray Diffraction is applied to investigate the structure of individual nanocrystalline silver particles in the 100nm size range. In order to enhance the available signal, Kirkpatrick-Baez focusing optics have been introduced in the 34-ID-C beamline at APS. Concerns about the preservation of coherence under these circumstances are addressed through experiment and by calculations

    Quantifying Electrophoretic Deposition of Nanocrystal Superlattices Using Quartz Crystal Microbalance

    Get PDF
    Please click Additional Files below to see the full abstract

    Biosynthesis of Silver Nanoparticles from Desmodium triflorum: A Novel Approach Towards Weed Utilization

    Get PDF
    A single-step environmental friendly approach is employed to synthesize silver nanoparticles. The biomolecules found in plants induce the reduction of Ag+ ions from silver nitrate to silver nanoparticles (AgNPs). UV-visible spectrum of the aqueous medium containing silver ions demonstrated a peak at 425 nm corresponding to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy (TEM) showed the formation of well-dispersed silver nanoparticles in the range of 5–20 nm. X-ray diffraction (XRD) spectrum of the AgNPs exhibited 2θ values corresponding to the silver nanocrystal. The process of reduction is extracellular and fast which may lead to the development of easy biosynthesis of silver nanoparticles. Plants during glycolysis produce a large amount of H+ ions along with NAD which acts as a strong redoxing agent; this seems to be responsible for the formation of AgNPs. Water-soluble antioxidative agents like ascorbic acids further seem to be responsible for the reduction of AgNPs. These AgNPs produced show good antimicrobial activity against common pathogens

    Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) has been considered a promising technique for the detection of trace molecules in biomedicine and environmental monitoring. The ideal metal nanoparticles for SERS must not only fulfill important requirements such as high near-field enhancement and a tunable far-field response but also overcome the diffusion limitation at extremely lower concentrations of a target material. Here, we introduce a novel method to produce gold nanoparticles with open eccentric cavities by selectively adapting the structure of non-plasmonic nanoparticles via acid-mediated surface replacement. Copper oxide nanoparticles with open eccentric cavities are first prepared using a microwave-irradiation-assisted surfactant-free hydrothermal reaction and are then transformed into gold nanoparticles by an acidic gold precursor while maintaining their original structure. Because of the strong near-field enhancement occurring at the mouth of the open cavities and the very rough surfaces resulting from the uniformly covered hyperbranched sharp multi-tips and the free access of SERS molecules inside of the nanoparticles without diffusion limitation, adenine, one of the four bases in DNA, in an extremely diluted aqueous solution (1.0 pM) was successfully detected with excellent reproducibility upon laser excitation with a 785-nm wavelength. The gold nanoparticles with open eccentric cavities provide a powerful platform for the detection of ultra-trace analytes in an aqueous solution within near-infrared wavelengths, which is essential for highly sensitive, reliable and direct in vivo analysis.None1132sciescopu

    High-Temperature Stability of Passivated Silver Nanocrystal Superlattices

    Full text link
    corecore