42,065 research outputs found
Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988
Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed
Refining of metallurgical-grade silicon
A basic requirement of large scale solar cell fabrication is to provide low cost base material. Unconventional refining of metallurical grade silicon represents one of the most promising ways of silicon meltstock processing. The refining concept is based on an optimized combination of metallurgical treatments. Commercially available crude silicon, in this sequence, requires a first pyrometallurgical step by slagging, or, alternatively, solvent extraction by aluminum. After grinding and leaching, high purity qualtiy is gained as an advanced stage of refinement. To reach solar grade quality a final pyrometallurgical step is needed: liquid-gas extraction
Separation of primary solid phases from Al-Si alloy melts
The iron-rich solids formed during solidification of Al-Si alloys which are known to be detrimental to the mechanical, physical and chemical properties of the alloys should be removed. On the other hand, Al-Si hypereutectic alloys are used to extract the pure primary silicon which is suitable for photovoltaic cells in the solvent refining process. One of the important issues in iron removal and in solvent refining is the effective separation of the crystallized solids from the Al-Si alloy melts. This paper describes the separation methods of the primary solids from Al-Si alloy melts such as sedimentation, draining, filtration, electromagnetic separation and centrifugal separation, focused on the iron removal and on the separation of silicon in the solvent refining process
Lunar production of solar cells
The feasibility of manufacturing of solar cells on the moon for spacecraft applications is examined. Because of the much lower escape velocity, there is a great advantage in lunar manufacture of solar cells compared to Earth manufacture. Silicon is abundant on the moon, and new refining methods allow it to be reduced and purified without extensive reliance on materials unavailable on the moon. Silicon and amorphous silicon solar cells could be manufactured on the moon for use in space. Concepts for the production of a baseline amorphous silicon cell are discussed, and specific power levels are calculated for cells designed for both lunar and Earth manufacture
Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells
The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4)
Electron-Beam Manipulation of Silicon Dopants in Graphene
The direct manipulation of individual atoms in materials using scanning probe
microscopy has been a seminal achievement of nanotechnology. Recent advances in
imaging resolution and sample stability have made scanning transmission
electron microscopy a promising alternative for single-atom manipulation of
covalently bound materials. Pioneering experiments using an atomically focused
electron beam have demonstrated the directed movement of silicon atoms over a
handful of sites within the graphene lattice. Here, we achieve a much greater
degree of control, allowing us to precisely move silicon impurities along an
extended path, circulating a single hexagon, or back and forth between the two
graphene sublattices. Even with manual operation, our manipulation rate is
already comparable to the state-of-the-art in any atomically precise technique.
We further explore the influence of electron energy on the manipulation rate,
supported by improved theoretical modeling taking into account the vibrations
of atoms near the impurities, and implement feedback to detect manipulation
events in real time. In addition to atomic-level engineering of its structure
and properties, graphene also provides an excellent platform for refining the
accuracy of quantitative models and for the development of automated
manipulation.Comment: 5 figures, 4 supporting figure
- …
