1,389,567 research outputs found
Vanishing in Plain Sight
Playfully negotiating the historical constructs of theatrical vanishing and its disturbingly female trappings this paper centers on the creation of Bautier de Kolta’s l’Escamotage D’une Dame, an illusion used to screen the anxieties of the male British populous, irked by a buoyant surplus in unmarried, white, middle class women, in the late 1880s. Introducing texts such as W. R Greg’s Why are women Redundant? This paper makes ever more apparent the political, violent and sexual connotations of the female body in magical feats of performative disappearance. From the photographic curios of hidden mothers to the dark room of the séance, the conversation unfurls around the many forms of female vanishing, culminating in a discussion of the contemporary artwork Escamotage (Grace A Williams, 2015) that takes the Persian rug as both a motif of magical vanishing and a tool for the exposure of form.
This paper was originally delivered as a performance from within a ‘Zig-Zag’ illusion box, in collaboration with artist David Cheeseman. The first critical analysis of women’s role within magical illusions, delivered by a female artist from within a magical prop that continues to dismember female bodies for entertainment in the contemporary magic market
Optimal Constrained Wireless Emergency Network Antennae Placement
With increasing number of mobile devices, newly introduced smart devices, and the Internet of things (IoT) sensors, the current microwave frequency spectrum is getting rapidly congested. The obvious solution to this frequency spectrum congestion is to use millimeter wave spectrum ranging from 6 GHz to 300 GHz. With the use of millimeter waves, we can enjoy very high communication speeds and very low latency. But, this technology also introduces some challenges that we hardly faced before. The most important one among these challenges is the Line of Sight (LOS) requirement. In the emergent concept of smart cities, the wireless emergency network is set to use millimeter waves. We have worked on the problem of efficiently finding a line of sight for such wireless emergency network antennae in minimal time. We devised two algorithms, Sequential Line of Sight (SLOS) and Tiled Line of Sight (TLOS), both perform better than traditional algorithms in terms of execution time. The tiled line of sight algorithm reduces the time required for a single line of sight query from 200 ms for traditional algorithms to mere 1.7 ms on average
New Insights on Interstellar Gas-Phase Iron
In this paper, we report on the gas-phase abundance of singly-ionized iron
(Fe II) for 51 lines of sight, using data from the Far Ultraviolet
Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring
the equivalent widths of several ultraviolet absorption lines and subsequently
fitting those to a curve of growth. Our derivation of Fe II column densities
and abundances creates the largest sample of iron abundances in moderately- to
highly-reddened lines of sight explored with FUSE, lines of sight that are on
average more reddened than lines of sight in previous Copernicus studies. We
present three major results. First, we observe the well-established correlation
between iron depletion and and also find trends between iron depletion
and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine
the significance of these trends. Of note, a few of our lines of sight probe
larger densities than previously explored and we do not see significantly
enhanced depletion effects. Second, we present two detections of an extremely
weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of
sight (HD 24534 and HD 93222). We compare these detections to the column
densities derived through FUSE spectra and comment on the line's f-value and
utility for future studies of Fe II. Lastly, we present strong anecdotal
evidence that the Fe II f-values derived empirically through FUSE data are more
accurate than previous values that have been theoretically calculated, with the
probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small
updates. 53 total pages (preprint format), 7 tables, 11 figure
Large Interstellar Polarisation Survey, II : UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM
It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (>= 6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm
Reanalysis of Copernicus Measurements on Interstellar Carbon Monoxide
We used archival data acquired with the Copernicus satellite to reexamine CO
column densities because self-consistent oscillator strengths are now
available. Our focus is on lines of sight containing modest amounts of
molecular species. Our resulting column densities are small enough that
self-shielding from photodissociation is not occurring in the clouds probed by
the observations. While our sample shows that the column densities of CO and H2
are related, no correspondence with the CH column density is evident. The case
for the CH+ column density is less clear. Recent chemical models for these
sight lines suggest that CH is mainly a by-product of CH+ synthesis in low
density gas. The models are most successful in reproducing the amounts of CO in
the densest sight lines. Thus, much of the CO absorption must arise from denser
clumps along the line of sight to account for the trend with H2.Comment: 19 pages, 6 figures. Accepted for publication in Ap
Covariance of the One-Dimensional Mass Power Spectrum
We analyse the covariance of the one-dimensional mass power spectrum along
lines of sight. The covariance reveals the correlation between different modes
of fluctuations in the cosmic density field and gives the sample variance error
for measurements of the mass power spectrum. For Gaussian random fields, the
covariance matrix is diagonal. As expected, the variance of the measured
one-dimensional mass power spectrum is inversely proportional to the number of
lines of sight that are sampled from each random field. The correlation between
lines of sight in a single field may alter the covariance. However, lines of
sight that are sampled far apart are only weakly correlated, so that they can
be treated as independent samples. Using N-body simulations, we find that the
covariance matrix of the one-dimensional mass power spectrum is not diagonal
for the cosmic density field due to the non-Gaussianity and that the variance
is much higher than that of Gaussian random fields. From the covariance, one
will be able to determine the cosmic variance in the measured one-dimensional
mass power spectrum as well as to estimate how many lines of sight are needed
to achieve a target precision.Comment: 13 pages, 8 figures, MNRAS accepte
A Correlation Between Hard Gamma-ray Sources and Cosmic Voids Along the Line of Sight
We estimate the galaxy density along lines of sight to hard extragalactic
gamma-ray sources by correlating source positions on the sky with a void
catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray
sources that are detected at very high energy (VHE; E>100 GeV) or have been
highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard
source catalog (together referred to as "VHE-like" sources) are distributed
along underdense lines of sight at the 2.4 sigma level. There is also a less
suggestive correlation for the Fermi hard source population (1.7 sigma). A
correlation between 10-500 GeV flux and underdense fraction along the line of
sight for VHE-like and Fermi hard sources is found at 2.4 sigma and 2.6 sigma,
respectively. The preference for underdense sight lines is not displayed by
gamma-ray emitting galaxies within the second Fermi catalog, containing sources
detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether
this marginal correlation might be a result of lower extragalactic background
light (EBL) photon density within the underdense regions and find that, even in
the most extreme case of a entirely underdense sight line, the EBL photon
density is only 2% less than the nominal EBL density. Translating this into
gamma-ray attenuation along the line of sight for a highly attenuated source
with opacity tau(E,z) ~5, we estimate that the attentuation of gamma-rays
decreases no more than 10%. This decrease, although non-neglible, is unable to
account for the apparent hard source correlation with underdense lines of
sight.Comment: Accepted by MNRA
Volatile-Rich Circumstellar Gas in the Unusual 49 Ceti Debris Disk
We present Hubble Space Telescope STIS far-UV spectra of the edge-on disk
around 49 Ceti, one of the very few debris disks showing sub-mm CO emission.
Many atomic absorption lines are present in the spectra, most of which arise
from circumstellar gas lying along the line-of-sight to the central star. We
determined the line-of-sight CI column density, estimated the total carbon
column density, and set limits on the OI column density. Surprisingly, no
line-of-sight CO absorption was seen. We discuss possible explanations for this
non-detection, and present preliminary estimates of the carbon abundances in
the line-of-sight gas. The C/Fe ratio is much greater than the solar value,
suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of Beta
Pictoris.Comment: Accepted for publication in ApJ Letters. 5 pages, 4 figure
Tracking Eye Movements in Sight Translation – the comprehension process in interpreting
[[abstract]]While the three components of interpreting have been identified as comprehension, reformulation, and production, the process of how these components occur has remained relatively unexplored. The present study employed the eye-tracking method to investigate the process of sight translation, a mode of interpreting in which the input is written rather than oral. The research focused especially on the comprehension component in sight translation, addressed the validity of the horizontal and the vertical perspectives of interpreting, and ascertained whether reading ahead exists in sight translation. Eye movements of 18 interpreting students were recorded during silent reading of a Chinese speech, reading aloud a Chinese speech, and Chinese to English sight translation. Since silent reading consists of the comprehension component while reading aloud consists of the comprehension and production components, the two tasks served as a basis of comparison for investigating comprehension in sight translation.
The findings suggested that sight translation and silent reading were no different in the initial stage of reading, as reflected by similar first fixation duration, single fixation duration, gaze duration, fixation probability, and refixation probability. Sight translation only began to demonstrate differences from silent reading after first-pass reading, as shown by higher rereading time and rereading rate. Also, reading ahead occurred in 72.8% of cases in this experiment, indicating the overlap between reading and oral production in Chinese to English sight translation. The results supported the vertical perspective in interpreting as well as the claim of reading ahead. Implications for interpreter training are to attach more importance to paraphrasing skills and to focus more on the similarities between sight translation and simultaneous interpreting.
- …
