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ABSTRACT 

 

With increasing number of mobile devices, newly introduced smart devices, and 

the Internet of things (IoT) sensors, the current microwave frequency spectrum is 

getting rapidly congested. The obvious solution to this frequency spectrum congestion 

is to use millimeter wave spectrum ranging from 6 GHz to 300 GHz. With the use of 

millimeter waves, we can enjoy very high communication speeds and very low latency. 

But, this technology also introduces some challenges that we hardly faced before. The 

most important one among these challenges is the Line of Sight (LOS) requirement. In 

the emergent concept of smart cities, the wireless emergency network is set to use 

millimeter waves. We have worked on the problem of efficiently finding a line of sight 

for such wireless emergency network antennae in minimal time. We devised two 

algorithms, Sequential Line of Sight (SLOS) and Tiled Line of Sight (TLOS), both 

perform better than traditional algorithms in terms of execution time. The tiled line of 

sight algorithm reduces the time required for a single line of sight query from 200 ms 

for traditional algorithms to mere 1.7 ms on average. 
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1. Introduction 

In case of natural disaster or an emergency, the ability to communicate with outside 

world is of the highest consequence to resolve the situation. A large floor or an 

earthquake may damage power cables, telephone lines or cellular antennae resulting in 

loss of traditional communication lines such as the landline phones or the cellphones. 

In such situations, emergency responders still must have a reliable communication with 

each other and outside world to effectively mitigate the situation. To address this need, 

Office of Emergency Services (OES) of City of San José and similar offices in other 

major cities are deploying Wireless Emergency Networks (WENs). These networks 

will allow fire department, police department, hospitals, shelters, and food banks to 

communicate securely with each other and the outside world. For deploying these 

WENs, the most important question is to identify suitable locations to install wireless 

access points (APs) within the limits of cities. 

The WENs will be constructed using millimeter wave antennae. There are multiple 

reasons for moving from traditional microwave to millimeter wave technology. The 

prime reason among them is congestion of microwave frequency spectrum, 3 kHz to 6 

GHz. There are a wide variety of applications that already use wireless communications 

and almost all of them use microwave frequency spectrum. Microwave frequency 

ranges are reserved for these specific usages and applications. Some of these 

applications include aviation, military and government use, television broadcasting, 

radio broadcasting, global positioning systems (GPS), RADARs, and even microwave 

ovens [1]. The reserved frequencies of some of these applications are listed in Table 1. 

Hence, for wireless emergency networks, the obvious choice of frequency range was 

outside microwave, i.e. millimeter frequency spectrum, 6 GHz to 300 GHz. In the 
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millimeter wave spectrum, frequency range 60 GHz to 70 GHz is reserved for mission-

critical services. These services include healthcare, communications for self-driving 

cars, smart city infrastructures and similar mission-critical services. This allows 

wireless emergency networks, a mission-critical service to gain easily reserved 

spectrum in millimeter frequency. 

 

Table 1. Frequency Applications and Allocations in U.S. 

Frequencies Allocated Purpose 

510 – 535 kHz Government 

535 – 1605 kHz AM radio 

74.5 – 75.2, 108 – 137, 328.5 – 335.4, 

960 – 1215, 1427 – 1525, 220 – 2290, 

2310 – 2320, 2345 – 2390 MHz 

Aviation 

54 – 72, 76 – 88, 174 – 216, 470 – 608 

MHz 

Television broadcasting VHF and UHF 

88 – 99, 100 – 108 MHz FM radio broadcasting 

824 – 849 MHz Cellular telephones 

1215 – 1240, 1350 – 1400, 1559 – 1610 

MHz 

Global Positioning System (GPS) 

2.40 – 2.4835 GHz Microwave ovens 

 

In this project, we created a framework which allows a user to identify the best 

locations for wireless APs in the city limits. The locations are generated given multiple 

constraints. Generating such optimal AP locations is a multi-constrained optimization 

problem. Even though network antennae placement problems are studies for many 

years, the problem of placing WENs is unique due to use of millimeter waves. In this 

case, there are several additional constraints that we never faced before in microwave 

antennae placement. A wireless emergency network is created using several access 

points that use high-speed millimeter waves. So, existing algorithms are insufficient for 
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optimally finding locations for these APs. The constraints posed include physical 

limitations of antennae such as transmission range, point to point transmission or sector 

transmission and many soft constraints. We consider following constraints on the 

overall network for finding optimal locations: 

• Antennae Type: Millimeter wave antennae are generally point-to-point 

antennae, but even these antennae can be bidirectional or omnidirectional. In 

some cases, WENs can use sector antennae, but it reduces the range of 

transmission. 

• Range: Depending on the range of antennae, we need to place the different 

number of antennae in the same area. 

• Line of Sight (LOS): The line of sight constraint is the most important difference 

between millimeter waves and microwaves. The millimeter waves cannot 

penetrate most of the solid subjects like terrain, buildings, bridges, etc. Hence, 

there must be a clear line of sight between transmitting and receiving antennae. 

• Minimum Degree: To ensure safety and reliability of communication during 

times of disaster, every AP must have the ability to communicate with more 

than one AP. 

• Mobile Access Points: In congested areas or in areas without reliable 

communication, mobile access points can be deployed in form of a cell on 

wheels (CoW) or small cells on drones. 

 

In this project, we focus on identifying the line of sight (LOS) between two 

locations in the city. The rest of the report is organized as follows. Section 2 describes 

related works and their limitations. Section 3 gives an overview of component parts of 
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our proposed framework. Section 4 includes two algorithms for calculating line of sight 

between two locations within the city. Section 5 and 6 describe the experimental setup 

and experimental result respectively. Section 7 concludes the report. 
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2. Related Work 

There is very limited research present to address the placement of millimeter wave 

antennae. Many academic works are focused on automatic adjustment of receiver 

antennae in order to capture maximum signal for transmitting antennae. There are also 

studies on effects of obstructions and increasing or decreasing distance on strength of 

the signal. There are few studies which work on millimeter waves with similar 

constraints, but these studies were specifically focused on small range antennae up to 

200 m [2] [3] [4] [5] [6]. Palizban et al. [5] and Szyszkowicz et al. [6] only considered 

only the single type of obstacles, buildings. They assumed these buildings as only 2-

dimensional polygon shape on a flat map at an equal altitude as potential obstacles for 

signal transmission. In addition, none of these studies addressed additional constraints 

presented by wireless emergency networks discussed in section 1. 

Many manufacturers of millimeter wave antennae have published online tools that 

help their customers deciding the locations for placing the antennae. These tools 

address the problem of the line of sight to some extent, but these are very primitive 

tools and have many limitations. Some of these limitations are man-made objects like 

buildings. Some tools can only address the line of sight problem for terrain, some 

actually consider buildings as an obstacle. SCADACore RF – Line of Sight tool [7] and 

AirLink - Outdoor Wireless Link Calculator [8] only consider natural topologies such 

as mountains. On the other hand, tools like HeyWhatsThat Path Profiler [9] and 

Solewise Surface Elevation Tool [10] consider man-made obstacles, but these tools do 

have limitations considering certain objects such as small objects like traffic signals or 

organic objects like trees as a potential hindrance. 
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Most the above tools use Google Maps Elevation API [11] to query the heights of 

terrain or buildings. Even though this API is fairly accurate, it is not designed 

considering WENs in mind. Rapidly changing city infrastructure, new buildings being 

constructed, and old buildings being demolished can render elevations data obsolete in 

such sources. Additionally, there must be multiple data sources for height estimation 

for both natural terrains and man-made objects. In our proposed extensible framework, 

city authority is able to address the need for frequent changes and multiple data sources 

to automatically identify the optimal locations for network antennae placement. 
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3. Proposed Framework 

In this section, we discuss the components of our proposed framework. These 

components include wireless emergency network planning, i.e. what aspects need to be 

considered to efficiently plan WENs, millimeter wave links and their properties, and 

how can improve estimates of the height of any objects in the city. 

3.1. Wireless Emergency Network Planning 

In conventional network planning, we are concerned about sectoral coverage of the 

network. In other words, we are mainly focused on how we can serve more people with 

a minimum number of antennae. But in the problem like wireless emergency network 

planning, there is a very limited audience to receive these signals. Hence, rather than 

focusing on local coverage, we have to focus on high-speed connectivity between pairs 

of important locations which are at a considerably higher distance. If we have such 

high-speed connectivity between distant locations, the signal can be distributed using 

traditional techniques such as Wi-Max or Wi-Fi. To ensure reliable long-distance 

communication, point-to-point antennae are used. Figure 1 shows multiple point-to-

point antennae hosted on a single tower. 

There are two components for solving optimal constrained wireless emergency 

network antennae placement problem in the proposed framework. Component one 

provides an efficient way of estimating the line of sight between given points in terms 

of latitude and longitude on a map. This component considers all types of topographies, 

man-made structures and organic vegetation that can interfere wireless communication. 

The related systems discussed in sections 2 use Google Maps or in some cases Google 

Earth data for estimating heights. These sources as not specifically designed for the task 
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at hand can be highly inaccurate for a long-distance line of sight estimations. Most of 

such sources assume the earth is flat and approximate the heights of small unimportant 

buildings. Component two will take a list of pairs of locations which have a clear line 

of sight and are suitable for emergency situations and produce the list of locations where 

the antennae must be placed. This component will use min-k degree multi-constrained 

optimization method to solve the optimization problem. The method ensures reliable k 

degrees of communication links between all access points. 

 

Figure 1 Tower with multiple point-to-point antennae 1 

The component two algorithm will be based on recommender system techniques. If 

we have a list of selected access points which are optimal, next access point can be 

                                                 
1 User:GeorgeLouis [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], via Wikimedia 

Commons 
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added to this list based on following the top recommendation. This recommendation 

will be ranked based on most similar access point. The access points having most 

reliable locations and highest possible communication speed based on the constraints 

discussed in section 1 will be ranked higher. The algorithm can be repeated till optimal 

size of the network is reached. Even though this problem is not convex, some overall 

good solutions can be obtained if recommender systems based on tensor factorization 

and matrix, because they may capture inherent structures of this problem. 

3.2. Antennae Links 

The most important components of wireless emergency network planning are antennae 

links. The millimeter waves antennae emit ultra-high-frequency directed beams of 

waves to transmit data between two fixed points. Figure 2 demonstrates an example of 

such communication. The transmission antenna (TX) modulates the signal to encode 

transmission data. The antenna then sends the signal in the form of a directed beam in 

the atmosphere. As the waves propagate through the free space, some signal is 

deteriorated or gets lost. But on a clear day, such transmission can reach up to 65 km 

distance. The receiving antenna (RX) collects the signal transmitted by the antenna 

(TX) and re-translates it into binary form. 
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Figure 2 Communication between a transmitting antenna (TX) and receiving antenna (RX) 

Even though millimeter waves can transmit huge amounts of data at almost the 

speed of light and over large distances, they still require a clear path between the 

antennae TX and RX, i.e. Line of Sight (LOS), for an effective transmission. Trees, 

buildings, bridges, and any other hindrance in the transmission path must be avoided 

either by relocating one or both of the antennae TX and RX points or by bridging to 

relay information. It is understood in the second case that bridge point has a clear path 

to both antennae TX and RX. A millimeter wave passing through a vegetation can be 

somewhat stronger in the winter but can be weaker once trees grow leaves in the spring. 

Smooth terrains, water reservoirs, or any other reflective surfaces in the 

transmission path can reflect the signal in the unintended direction. This sometimes 

causes the signal to never arrive at receiving antenna RX. In some cases, the signal does 

arrive at RX, but it is out of phase. This causes significant degradation of the signal 

Line of sight (LOS)

Fresnel zone

TX RX
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[12]. Physicist Augustin-Jean Fresnel invented concentric ellipsoidal volumes in the 

transmitted radiation pattern that help visualize the reflection potential of the radio 

waves [13]. These ellipsoidal volumes are named as Fresnel zones, demonstrated in 

Figure 2. If Fresnel zone is obstructed more than 40%, transmission signal gets severely 

degraded. Hence, while predicting the line of sight, it is also important to consider 

Fresnel zone in addition to the direct path. 
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4. Estimating Line of Sight 

Obstructions in communication path degrade the efficiency of the wireless network. 

Millimeter waves in wireless communication get reflected off buildings. When we 

choose a pair of locations for antennae placement, we have to make sure that there is a 

clear line of sight for optimal utilization of Fresnel zone ensuring maximum bandwidth. 

In this section, we discuss our two algorithms that may be used to effectively estimate 

the line of sight between two arbitrary locations within the city. 

4.1.  Sequential Line of Sight 

(a)  

(b)  

Figure 3 LOS obstruction scenarios. (a) Building C is not tall enough to obstruct the LOS between buildings A and 

B. (b) Building C obstructs the LOS between buildings A and B. 

Our simple baseline algorithm of the line of sight estimation queries the GIS 

database for all buildings C between two selected antennae locations A and B. These 
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buildings are OpenStreetMap polygons intersecting the path between the locations. 

Each returned building is then verified. Each building's height must be lower than the 

intersecting point on the slope from the location A to location B. Figure 3 shows two 

scenarios for one such building C. In the first case (a), it is clear that building C will 

not obstruct LOS between buildings A and B. The three buildings start at the same 

altitude, and buildings A and B are both taller than building C. In the second case (b), 

it is not as clear, as building B is not as tall as building C. Note, however, that LOS 

would be clear, for example, if building C and B were the same height. Specifically, 

the height of building C must be lower than the height of the transmission line 

(connecting the tops of the A and B buildings) at building C. 

 

Figure 4 Potential Fresnel obstruction 
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One potential problem with the SLOS method is the case when the transmission 

line passes narrowly between two tall structures. As noted in Section II-B, the path 

between the TX and RX antennas should be clear not only on the direct line between 

them but also within at least 60% of the Fresnel zone of the two antennas. Figure 4 

shows one such potential example. To account for this scenario, we execute two 

additional queries, for parallel lines situated at  m on each side of the transmission line. 

SLOS then checks the height of buildings that were not present in the original query 

result to ensure they will not create obstacles in the transmission path. The SLOS 

method is formulated in Algorithm 1. 

Table 2. Algorithm SLOS 

Algorithm 1: Sequential Line of Sight 

Input: Points p1 and p2 in terms of latitude and longitude) 

Output: Binary Line of Sight Result 

polygon poly1 = ST_Within(p1, polygons); 

polygon poly2 = ST_Within(p2, polygons); 

distance = ST_Distance(poly1, poly2); 

diffHeigth = poly1.maxHeight - poly2.maxHeight; 

θ = diffHeight / distance; 

polygonsInWay = ST_Intersects(ST_MakeLine(poly1, poly2), polygons); 

for each polygon in polygonsInWay do 

 tempDistance = ST_Distance(poly1, polygon); 

 allowedHeight = tempDistance*θ + poly1.maxHeight; 

 if polygon.maxHeight > allowedHeight then 

  return FALSE; 

 end 

end 

return TRUE; 
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4.2.  Tiled Line of Sight 

In the sequential line of sight, we noticed some discrepancies like uneven building 

polygon size and missing buildings polygon in OpenStreetMap data. If a certain 

polygon is of a very big area, having a single height for that entire area reduces the 

accuracy of the Line of Sight queries. On the contrary, very small polygon structure 

does not efficiently reduce the time required for the query. To address these issues, we 

decided to draw our own artificial polygons of even sizes. We call this data structure as 

Tile. Unlike OSM polygons, each Tile is adjacent to another Tile. So, there is very less 

room for error due to non-polygon structures like area immediately outside a building. 

The Tile data structure also addresses the issue of overlapping polygons. Hence, we 

will not consider the same area twice in this data structure. These Tiles can then further 

be aggregated to higher level data structures. Figure 5 shows Tile representation and 

pooling [14]. These tiles are constructed and populated using Algorithm 2. Method for 

finding a Tile ID in this algorithm is derived from Bresenham's line algorithm for 

Computer Graphics [15]. 

In the case of a clear line of sight, the SLOS algorithm has to check each building 

that intersects the transmission line to ensure they will not obstruct transmission. We 

propose an efficient data structure that can significantly reduce the number of buildings 

whose height must be retrieved and considered, based on a hierarchical tiling of the 

city’s surface area. Figure 5 shows an initial decomposition of the surface area into 

equally sized tiles. Note that the number of tiles may be different between levels. In the 

example, green tiles have a maximum height lower than the minimum intersecting point 

of the transmission line slope, while red tiles exceed that height. Given the number of 

tiles per level, the tiling algorithm is straight-forward. For each tile, we pre-compute 
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and store the highest elevation of any building in the tile. Note that the maximum 

heights of lower-level tiles can be easily aggregated to find the maximum height of a 

higher-level tile. The highest elevation in a higher-level tile is the maximum elevation 

among all child tiles. 

Table 3. Algorithm Tile Creation 

Algorithm 2: Tile Creation 

Input: GIS data tuples, Number of rows, columns, and levels of Tiles 

Output: Tile data structure 

totalRows = rowslevels; 

totalColumns = columnslevels; 

tileWidth = (globalMaxLon - globalMinLon) / totalColumns; 

tileHeight = (globalMaxLat - globalMinLat) / totalRows; 

tileArray = newTile[totalRows*totalColumns]; 

for each point in tuples do 

 id = getTileID(point, tileWidth, tileHeight); 

 if tileArray[id].maxHeight < point .height then 

  tileArray[id].maxHeight = point .height; 

 end 

end 

return tileArray; 

 

When predicting LOS, we first check the maximum height of tiles intersecting the 

transmission path. If a tile’s maximum height does not obstruct the transmission path, 

we can skip checking all the buildings within that tile. On the other hand, in the case of 
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an obstruction, we can dig into the next lower level, retrieving child tiles that intersect 

the transmission path. At the lowest (leaf) level, data is stored without tiling and we 

determine the line of sight using the baseline SLOS approach. This method will 

significantly reduce the number of calculations required to solve the LOS prediction 

problem. 

 

Figure 5 Surface area tiling in the TLOS algorithm. Green tiles have a maximum height lower than the minimum 

intersecting point of the transmission line slope, while red tiles exceed that height 

 

This method is detailed in Algorithm 3. 

Table 4. Algorithm TLOS 

Algorithm 3: Tiled Line of Sight 

Input: Points p1 and p2 in terms of latitude and longitude, level (default 1), allowed 

heights of points (default null) 

Output: Binary Line of Sight Result 

tile1 = getTile(p1, level); 

tile2 = getTile(p2, level); 

distance = distance(tile1, tile2); 
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diffHeigth = tile1.maxHeight - tile2.maxHeight; 

θ = diffHeight / distance; 

tilesInWay = BresenhamsLineAlgorithm(tile1, tile2, level ); 

for each tile in tilesInWays do 

 tempDistance = distance(tile1, tile); 

 allowedHeight = tempDistance*θ + tile1.maxHeight; 

 if tile.maxHeight > allowedHeight then 

  if level < totalLevels then 

   point1, point2 = Points of intersection of BresenhamLine for 

tile; 

   h1, h2 = Allowed heights at point1, point2; 

   if ! RecursiveCall(point1, point2, level + 1, h1, h2) then 

    return FALSE; 

   end 

  else 

   return FALSE; 

  end 

 end 

end 

return TRUE; 
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5. Experimental Setup 

In order to determine the effectiveness of our baseline method, we compared its 

ability to detect clear or obstructed LOS, which is solved as a classification problem. 

We use accuracy to measure the effectiveness of our method, which is defined as the 

ratio between the number of correctly predicted samples and the total number of 

samples predicted. Additionally, we report precision, recall, and F1-measure for the 

prediction. Precision is defined as the fraction of samples that are relevant in the 

prediction, recall is the fraction of relevant samples that were successfully predicted, 

and F1-measure is the harmonic mean of the precision and recall scores. Note that 

precision, recall, and F1-measure depend on which class is considered relevant and 

produce different results in an imbalanced binary classification scenario. We measure 

efficiency in the time (wall-clock) taken by each query, in milliseconds. In following 

subsections, details about execution environment and technologies used are explained. 

5.1.  Execution environment 

Both algorithms SLOS and TLOS were executed on a server with dual-socket 12-

core 2.5 GHz Intel Xeon E52680 v3 (Haswell) processors and 384 GB RAM. We also 

made sure that there are no other programs running on the server when these 

experiments were carried out. We used PostgreSQL version 9.6.1 to host our GIS 

database. As a proof of concept, we used a subset of OSM and LiDAR data covering 

the city of San José, which takes up 685GB of storage, including all indexes. While our 

system has 24 cores available, the PostgreSQL engine used only one core for executing 

each query. In all experiments, we set  = 6. 
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5.2.  PostgresSQL and PostGIS extension 

For testing our both algorithms, we chose the city of San José as our testing ground. 

Mapzen [16] creates custom GIS data batches on request. We submitted a request for 

GIS data within the boundary of the city of San José. This data is basically 

OpenStreetMap (OSM) data [17]. This selected GIS data was in ‘shape’ formatted files, 

which is a common GIS data compression format. We used LibLas utility [18] to 

convert the GIS data in normal SQL statements using ‘shp2pgsql’ function. The SQL 

statements were then executed to create the 2-dimensional model of the city of San 

José. PostgreSQL needs an extension called PostGIS [19] to handle the GIS data. This 

extension allows us to create a column of type geometry, each of its cells can hold the 

structure of one building. These geometries can also be indexed efficiently using 

PostGIS so we can search these buildings using latitude and longitude. We did index 

the buildings for our SLOS algorithm. 

The OSM data we imported in PostgreSQL database is only flat geometries without 

any height information associated with them. For our accurate height estimates, we 

used data obtained using LiDAR posted on nationalmaps.gov [20]. This data contains 

latitude, longitude, and height at distance of 1/3 arc second, which is approximately 10 

meters. This data is also compressed in the form of ‘las’ file format. We used las2text 

utility again form LibLas to convert this data into comma separated values. These text 

files were again imported into PostgreSQL tables. This data contains records in the 

Lambert Conical projection format, which we had to convert to the WSG84 projection 

format of the OSM records. The guide provided by Yuriy Czoli [21] was very helpful 

in successfully converting between LiDAR and OSM data records. 
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Algorithm 4 details the PostGIS methods and technique used to populate the heights 

of the buildings in our database. 

Table 5. Algorithm Populating building heights 

Algorithm 4: Populating building heights 

Input: Open Street Map polygons, GIS data tuples (latitude, longitude, height) 

Output: Open Street Map polygons with heights 

for each polygon in polygons do 

 points = ST_Within(tuples, polygon); 

 maxHeight = -6000.0; 

 for each point in points do 

  if point .height >maxHeight then 

   maxHeight = point .height; 

  end 

 end 

 polygon.maxHeight =maxHeight; 

end 
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5.3. qGIS 

qGIS [22] is the utility we used to visualize the information in PostgreSQL database. 

All the building structures in the city of San José can be seen in   

Figure 6. Figure 7 shows the height data points superimposed on building geometries. 

In some locations where the LiDAR data was not available, we used Google Maps 

Elevation API to fill the missing information [11]. After this process, our database was 

ready to carry of the experiments. 

  

Figure 6 qGIS visualization of building structures in city of San José 
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Figure 7 Height data superimposed in building structures 

5.4.  Test data 

For our experiments, we used public FCC tower locations dataset [23] as true positive 

test data. This data is stored in form of Google fusion table. For the negative sample, 

we generated random pairs of points in the city of San Jose and tested them using online 

utilities. The negative results were stored as true negatives. For our efficiency tests 

described in section 6, we again used randomly generated 20000 data point pairs. But, 

in this case, the emphasis was on efficiency rather than the accuracy of the results. 
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Figure 8 FCC tower location links data on Google Fusion table 
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6. Results & Discussion 

We executed two experiments in order to test the efficiency and effectiveness of 

our baseline SLOS method and improved TLOS method. In the first experiment, we 

compared the ability to detect clear or obstructed LOS on 1506 our generated dataset. 

We selected LOS queries by choosing two buildings to form these sets from the city of 

San José and predicting the link between them. As we can see the results in Table 6, 

among the 1506 pairs of queries, 47 were misclassified, resulting in the accuracy of 

96.87% for the sequential line of sight (SLOS) and only 18 were misclassified, resulting 

in the accuracy of 98.80% for the tiled line of sight (TLOS). These results were 

encouraging when compared to our last set of the experiment [14], as this dataset is 

balanced, and we had very good results in both cases clear and obstructed line of sight 

queries. As shown in Table 7, for SLOS, we had 96.07% precision, 96.67% recall, and 

96.87% F1-measure for clear links. For obstructed links, we received 96.69% precision, 

97.07% recall, and 96.88% F1-measure. As shown in Table 8, for TLOS, clear links 

had 99.19% precision, 98.40% recall, and 98.80% F1-measure and obstructed links had 

98.41% precision, 99.20% recall and 98.80% F1-measure. 

Table 6. Accuracy comparison for SLOS and TLOS 

 
SLOS TLOS 

Queries 1506 1506 

Correct Classification 1459 1488 

Incorrect Classification 47 18 

Accuracy 96.87% 98.80% 

Mode Execution Time ~60 ms ~1.7 ms 
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Table 7. Precision, recall, and F1-measure for SLOS 

SLOS Precision Recall F1-measure 

Obstructed 96.69% 97.07% 96.88% 

Clear 96.07% 96.67%  96.87% 

 

Table 8. Precision, recall, and F1-measure for TLOS 

TLOS Precision Recall F1-measure 

Obstructed 98.41% 99.20% 98.80% 

Clear 99.19% 98.40% 98.80% 

 

On average, the distance between selected points in the queries was approximately 

17 km. The classification line in Figure 6 shows the distribution of execution time 

among the 200 queries in our effectiveness experiment. Note that the y-axis is log-

scaled. Most queries took between 60 and 100 ms to execute for SLOS and between 1 

and 2 ms for TLOS.  The time improvement was also due to the parallel implementation 

of the queries in both the methods using multi-threading in Java. We also made sure to 

keep the threads alive after the execution and they could pick up next task in thread-

safe blocking queues. This improved the performance by almost 20% than creating new 

threads for every query reducing the overhead of creation and destruction of threads.  
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Figure 9 Distribution of execution time in our effectiveness experiment 

Without the multi-threading architecture, the SLOS method tool 120 ms on average 

to execute and TLOS method took 17 ms on average. As a way to further investigate 

the efficiency of our method, we executed a set of 20,000 random LOS queries, 

recording the execution time for each. The random line in Figure 9 shows the 

distribution of execution times among these queries, which almost exactly matches that 

of the classification experiment, with the exception of the extreme start of the 

distribution. A few points in our classification experiments took 150-217 ms to execute 

in SLOS. In TLOS, the behavior was somewhat irregular. At the end of experiments, 

there were some spikes in execution time. Similarly, a few of the points in our random 

query experiment took 500-2567 ms to execute for SLOS, but in TLOS they took 

around 100-159 ms. However, we could not see a clear correlation between-point 

distance and query execution time among these few points in either experiment. We 

conclude that the high execution times in these few queries are likely due to the GIS 

system loading certain indexes from disk in case of SLOS. To better understand the 

relationship between query execution time and distance in our experiments, we 
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computed the correlation between the two variables. The 200 sample classification 

experiment results showed a correlation of 0.49, while the 20,000 sample random 

experiment results showed a correlation of 0.21. 

 

Figure 10 Time-Distance co-relation of line-of-sight queries using SLOS and TLOS algorithms 

Figure 10 shows a scatter plot of the random experiment results, denoting the 

distance and execution time co-relation of these queries. While many queries take 

between 50–120 ms for SLOS algorithm and between 1 to 17 ms for TLOS, the graph 

shows a clear slightly positive correlation between distance and execution time. In the 

sequential line of sight method, queries for points farther than 4,000 m apart take longer 

to execute, in general, than those are closer together. Same queries have lesser co-

relation in the tiled line of sight algorithm. 
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7. Conclusion 

In this paper, we first presented a general framework for solving the optimal 

constrained wireless network antenna placement problem and then detailed two 

algorithms for efficiently identifying whether there is a clear line of sight between two 

locations in the city, which is a critical component in the framework. Our first baseline 

algorithm, SLOS, uses off-the-shelf GIS aware database systems and open-source data 

to effectively solve the problem, resulting in 96.87% accuracy in our initial 

experiments. While its average execution time of 60 ms may impede it from solving 

the optimization problem in a reasonable amount of time, our Tiling Line of Sight 

(TLOS) method delivered much higher efficiency by drastically reducing the number 

of structures whose height must be checked to ensure it does not obstruct LOS. TLOS 

promises the execution time of 1.7 ms on average at accuracy close to 98.80% which 

definitely is the best contender to be used in the constrained optimization system.  
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