482,006 research outputs found

    Effect of reconstituted method on shear strength properties of peat

    Get PDF
    Peat is an organic soil contains more than 75% organic content. Shear strength of the soil is one of the most important parameters in engineering design, especially during the pre-construction and post-construction periods, since used to evaluate the foundation and slope stability of soil. Peat normally known as a soil that has very low shear strength and to determine and understand the shear strength of the peat is difficult in geotechnical engineering because of a few factors such as the origin of the soil, water content, organic matter and the degree of humification. The aim of this study was to determine the effective undrained shear strength properties of reconstituted peat. All the reconstituted peat samples were of the size that passing opening sieve 0.425mm, 1.000mm, 2.360mm and 3.350mm and were preconsolidated at pressures of 50 kPa, 80 kPa and 100 kPa. The relationship deviator stress- strain, σdmax and excess pore water pressure, Δu, shows that in both of reconstituted and undisturbed peat gradually increased when confining pressure, σ’ and pre- consolidation pressure, σc increased. As a conclusion, the undrained shear strength properties result obtained shows that the RS3.350 has higher strength than RS0.425, RS1.000 and RS2.360. However, the entire reconstituted peat sample shows the increment value of the shear strength with the increment of peat size and pre- consolidation pressure. For comparison purposes, the undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. The factors that contributed to the higher shear strength properties in this study are segregation of peat size, pre- consolidation pressure, initial void ratio and also the physical properties such as initial water content, fiber content and liquid limit

    Longitudinal shear behavior of several oxide dispersion strengthened alloys

    Get PDF
    Two commercial oxide dispersion strengthened (ODS) alloys, MA-753 and MA-754, and three experimental ODS alloys, MA-757E, MA-755E, and MA-6000E, were tested in shear at 760 C. Comparisons were made with other turbine blade and vane alloys. All of the ODS alloys exhibited less shear strength than directionally solidified Mar-M 200 = Hf or then conventionally cast B-1900. The strongest ODS alloy tested, MA-755E, was comparable in both shear and tensile strength to the lamellar directionally solidified eutectic alloy gamma/gamma prime - delta. Substantial improvements in shear resistance were found for all alloys tested when the geometry of the specimen was changed from one generating a transverse tensile stress in the shear area to one generating a transverse compressive stress. Finally, 760 C shear strength as a fraction of tensile strength was found to increase linearly with the log of the transverse tensile ductility

    Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums

    Get PDF
    Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed

    Shear strength analysis of concrete beams reinforced with GFRP bars using strut and tie model

    Get PDF
    This dissertation presents an experimental investigation on the behavior and ultimate shear strength of reinforced concrete beam. Sixteen reinforced concrete beams was design and tested to failure. This study consists of two series of beams, which are conventional steel reinforced beams (BSN) and reinforced concrete beams with Strut and Tie Model (STM) using StaadPro software and both result were compared in term of shear strength. The main test variables were shear span-to-depth ratio (2.1 and 2.9), percent of longitudinal reinforcement ratio (tension) steel and GFRP (0.6% and 0.9%), and shear reinforcement ratio (1.5% and 0.6%). The test results revealed that the mode of failure for all beam is flexural with shear reinforcement characteristics and longitudinal reinforcement ratio play a critical role in controlling the mode of failure. The experimental approved that the spacing between shear cracks for the specimens with larger shear span to depth ratio is greater than the smaller shear span to depth ratio and while the shear span to depth ratio (a/d) decreases, the shear strength increase. For longitudinal reinforcement ratio it can be inferred that the higher longitudinal reinforcement ratio brings the smaller diagonal crack. Also, greater stirrup spacing leads to the greater diagonal crack, confirming that there is a significant influence of the stirrup spacing on the spacing between shear cracks. The reason for this behavior is the decreasing effective concrete area, in which shear crack width is controlled by the stirrup, and hence the increasing bond effect between the stirrup and the surrounding concrete

    Shear design of HSC beams with combination of links and horizontal web steel

    Get PDF
    The existing recommendations in Eurocode 2 and the British Code of Practice for the shear design of beams are derived from research conducted essentially on normal-strength concrete (NSC) with cube strengths up to 50 MPa, and it was found that the shear strengths of high-strength concrete (HSC) members made with limestone aggregate are below the characteristic resistances of identical NSC members. Previous experimental tests have also shown that significant differences exist in the angle of crack of shear failure of NSC and HSC. This paper presents data from five beam tests, which demonstrate that HSC with limestone aggregate has a reduced shear strength compared with NSC made with gravel and thus shows a gap in knowledge in the design approach to shear resistance of HSC beams. Previous investigations have suggested that horizontal web steels can contribute to the overall shear resistance of a reinforced concrete member in conjunction with the other constituents, concrete, tension and shear steel. The paper also presents data from tests on 11 beam tests and shows that the shear resistance of HSC beams is highly dependent on dowel action resulting from horizontal web bars positioned at the centre of the depth of the beam. Past attempts to quantify this dowel action are investigated and an improved design rule is proposed
    corecore