5,277 research outputs found

    Shape-changing solar sails for novel mission applications

    Get PDF
    In order to increase the range of potential mission applications of solar sail technology, this paper introduces the concepts of shape change and continuously variable optical properties to large gossamer spacecraft. Merging the two concepts leads to the idea of solar sails as multi-functional platforms that can have potential benefits over conventional solar sails by delivering additional key mission functions such as power collection, sensing and communications. To this aim, the paper investigates the static deflection of a thin inelastic circular sail film with a variable surface reflectivity distribution. The sail film is modelled as a single surface framed by a rigid supporting hoop structure. When changing the reflectivity coefficient across the sail surface, the forces acting on the sail can be controlled without changing the incidence angle relative to the Sun. In addition, by assigning an appropriate reflectivity function across the sail, the load distribution due to solar radiation pressure can also be manipulated to control the billowing of the film. By an appropriate choice of reflectivity across the sail, specific geometries can be generated, such as a parabolic reflector, thus enabling a multi-functional sail. This novel concept of optical reconfiguration can potentially extend solar sail mission applications

    Multi-step self-guided pathways for shape-changing metamaterials

    Get PDF
    Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require external control in macroscopic mechanical systems, provided by, e.g., actuators in robotics or manual folding in origami. Here we introduce shape-changing mechanical metamaterials, that exhibit self-guided multi-step pathways in response to global uniform compression. Their design combines strongly nonlinear mechanical elements with a multimodal architecture that allows for a sequence of topological reconfigurations, i.e., modifications of the topology caused by the formation of internal self-contacts. We realized such metamaterials by digital manufacturing, and show that the pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We furthermore demonstrate that self-contacts suppress pathway errors. Finally, we demonstrate how hierarchical architectures allow to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening new avenues for self-folding media, pluripotent materials, and pliable devices in, e.g., stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See https://youtu.be/8m1QfkMFL0I for an explanatory vide

    Shape-changing Collisions of Coupled Bright Solitons in Birefringent Optical Fibers

    Get PDF
    Wecritically review the recent progress in understanding soliton propagation in birefringent optical fibers.By constructing the most general bright two-soliton solution of the integrable coupled nonlinear Schroedinger equation (Manakov model) we point out that solitons in birefringent fibers can in general change their shape after interaction due to a change in the intensity distribution among the modes even though the total energy is conserved. However, the standard shape-preserving collision (elastic collision) property of the (1+1)-dimensional solitons is recovered when restrictions are imposed on some of the soliton parameters. As a consequence the following further properties can be deduced using this shape-changing collision. (i) The exciting possibility of switching of solitons between orthogonally polarized modes of the birefringent fiber exists. (ii) When additional effects due to periodic rotation of birefringence axes are considered, the shape changing collision can be used as a switch to suppress or to enhance the periodic intensity exchange between the orthogonally polarized modes. (iii) For ultra short optical soliton pulse propagation in non-Kerr media, from the governing equation an integrable system of coupled nonlinear Schroedinger equation with cubic-quintic terms is identified. It admits a nonlocal Poisson bracket structure. (iv) If we take the higher-order terms in the coupled nonlinear Schroedinger equation into account then their effect on the shape-changing collision of solitons, during optical pulse propagation, can be studied by using a direct perturbational approach.Comment: 14 pages, ROMP31, 4 EPS figure

    Shape changing and accelerating solitons in integrable variable mass sine-Gordon model

    Get PDF
    Sine-Gordon model with variable mass (VMSG) appears in many physical systems, ranging from the current through nonuniform Josephson junction to DNA-promoter dynamics. Such models are usually nonintegrable with solutions found numerically or peturbatively. We construct a class of VMSG models, integrable both at classical and quantum level with exact soliton solutions, which can accelerate, change their shape, width and amplitude simulating realistic inhomogeneous systems at certain limits.Comment: 6 pages, 4 figures, revised with more physical input, to be published in Phys. Rev. Let
    • …
    corecore